赞
踩
概念:
1)引入分区表
需要根据日期对日志进行管理, 通过部门信息模拟
dept_20200801.log
dept_20200802.log
dept_20200803.log
2)创建分区表语法
0: jdbc:hive2://hadoop105:10000> create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (day string)
row format delimited fields terminated by '\t';
注意:分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。
3)加载数据到分区表中
(1) 数据准备
dept_20200801.log
10 ACCOUNTING 1700
20 RESEARCH 1800
dept_20200802.log
30 SALES 1900
40 OPERATIONS 1700
dept_20200803.log
50 TEST 2000
60 DEV 1900
(2) 加载数据
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/dept_20200801.log' into table dept_partition partition(day='20200801');
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/dept_20200802.log' into table dept_partition partition(day='20200802');
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/dept_20200803.log' into table dept_partition partition(day='20200803');
注意:分区表加载数据时,必须指定分区
图 分区表
4)查询分区表中数据
0: jdbc:hive2://hadoop105:10000> select * from dept_partition where day='20200801';
0: jdbc:hive2://hadoop105:10000> select * from dept_partition where day='20200801'
union
select * from dept_partition where day='20200802'
union
select * from dept_partition where day='20200803';
0: jdbc:hive2://hadoop105:10000> select * from dept_partition where day='20200801' or
day='20200802' or day='20200803' ;
5)查看分区表有多少分区
0: jdbc:hive2://hadoop105:10000> show partitions dept_partition;
6)增加分区
0: jdbc:hive2://hadoop105:10000> alter table dept_partition add partition(day='20200804') ;
0: jdbc:hive2://hadoop105:10000> alter table dept_partition add partition(day='20200805') partition(day='20200806');
7)删除分区
0: jdbc:hive2://hadoop105:10000> alter table dept_partition drop partition (day='20200806');
0: jdbc:hive2://hadoop105:10000> alter table dept_partition drop partition (day='20200804'), partition(day='20200805');
8)查看分区表结构
0: jdbc:hive2://hadoop105:10000> desc formatted dept_partition;
1)创建二级分区表
0: jdbc:hive2://hadoop105:10000> create table dept_partition2(deptno int, dname string, loc string) partitioned by (day string, hour string) row format delimited fields terminated by '\t';
0: jdbc:hive2://hadoop105:10000> desc dept_partition2;
2)正常的加载数据
(1)加载数据到二级分区表中
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/dept_20200801.log' into table
dept_partition2 partition(day='20200801', hour='12');
(2)查询分区数据
0: jdbc:hive2://hadoop105:10000> select * from dept_partition2 where day='20200801' and hour='12';
3)把数据直接上传到分区目录上,让分区表和数据产生关联的三种方式
(1)方式一:上传数据后修复
0: jdbc:hive2://hadoop105:10000> dfs -mkdir -p /db_hive2/dept_partition2/day=20200801/hour=13;
0: jdbc:hive2://hadoop105:10000> dfs -put /opt/module/hive-3.1.2/datas/dept_20200801.log /db_hive2/dept_partition2/day=20200801/hour=13;
0: jdbc:hive2://hadoop105:10000> select * from dept_partition2 where day='20200801' and hour='13';
0: jdbc:hive2://hadoop105:10000> msck repair table dept_partition2;
0: jdbc:hive2://hadoop105:10000> select * from dept_partition2 where day='20200801' and hour='13';
(2)方式二:上传数据后添加分区
0: jdbc:hive2://hadoop105:10000> dfs -mkdir -p /db_hive2/dept_partition2/day=20200801/hour=14;
0: jdbc:hive2://hadoop105:10000> dfs -put /opt/module/hive-3.1.2/datas/dept_20200801.log /db_hive2/dept_partition2/day=20200801/hour=14;
0: jdbc:hive2://hadoop105:10000> alter table dept_partition2 add partition(day='20200801',hour='14');
0: jdbc:hive2://hadoop105:10000> select * from dept_partition2 where day='20200801' and hour='14';
(3)方式三:创建文件夹后 load 数据到分区
0: jdbc:hive2://hadoop105:10000> dfs -mkdir -p /db_hive2/dept_partition2/day=20200801/hour=15;
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/dept_20200801.log' into table
dept_partition2 partition(day='20200801',hour='15');
0: jdbc:hive2://hadoop105:10000> select * from dept_partition2 where day='20200801' and hour='15';
1)开启动态分区参数设置
(1)开启动态分区功能(默认true,开启)
hive.exec.dynamic.partition=true;
(2)设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。)
hive.exec.dynamic.partition.mode=nonstrict;
(3)在所有执行MR的节点上,最大一共可以创建多少个动态分区。默认1000
hive.exec.max.dynamic.partitions=1000;
(4)在每个执行MR的节点上,动态分区的个数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错。
hive.exec.max.dynamic.partitions.pernode=100
(5)整个MR Job中,最大可以创建多少个HDFS文件。默认100000
hive.exec.max.created.files=100000
(6)当有空分区生成时,是否抛出异常。一般不需要设置。默认false
hive.error.on.empty.partition=false
2)案例实操
(1)创建目标分区表
0: jdbc:hive2://hadoop105:10000> create table dept_partition_dy(id int, name string) partitioned by (loc int) row format delimited fields terminated by '\t';
(2)设置动态分区
set hive.exec.dynamic.partition.mode = nonstrict;
0: jdbc:hive2://hadoop105:10000> insert into table dept_partition_dy partition(loc) select deptno, dname, loc from dept;
(3)查看目标分区表的分区情况
0: jdbc:hive2://hadoop105:10000> show partitions dept_partition_dy;
分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区。对于一张表或者分区,Hive 可以进一步组织成桶,也就是更为细粒度的数据范围划分。
分桶是将数据集分解成更容易管理的若干部分的另一个技术。
分区针对的是数据的存储路径;分桶针对的是数据文件。
1)先创建分桶表,通过直接导入数据文件的方式
(1)数据准备
1001 xueshen1 1002 xueshen2 1003 xueshen3 1004 xueshen4 1005 xueshen5 1006 xueshen6 1007 xueshen7 1008 xueshen8 1009 xueshen9 1010 xueshen10 1011 xueshen11 1012 xueshen12 1013 xueshen13 1014 xueshen14 1015 xueshen15 1016 xueshen16
(2)创建分桶表
create table stu_buck(id int, name string)
clustered by(id)
into 4 buckets
row format delimited fields terminated by '\t';
(3)查看表结构
0: jdbc:hive2://hadoop105:10000> desc formatted stu_buck;
Num Buckets: 4
(4)导入数据到分桶表中(hive新版本load数据可以直接跑mr(也会有点问题),老版的hive需要将数据传到一张表里,再通过查询的方式导入到分桶表里面。)
0: jdbc:hive2://hadoop105:10000> load data local inpath '/opt/module/hive-3.1.2/datas/student.txt' into table stu_buck;
(5)查看创建的分桶表中是否分成4个桶
(6)查询分桶的数据
0: jdbc:hive2://hadoop105:10000> select * from stu_buck;
分桶规则:
根据结果可知:Hive的分桶采用对分桶字段的值进行哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。