当前位置:   article > 正文

【python】基于岭回归算法对学生成绩进行预测

【python】基于岭回归算法对学生成绩进行预测

前言

数据分析和机器学习领域,回归分析是一种预测连续数值的监督学习技术。当数据特征与目标变量之间存在线性关系时,线性回归模型尤其有用。然而,当特征数量多于样本数量,或者特征之间存在多重共线性时,普通最小二乘法可能不是最佳选择。这时,岭回归(Ridge Regression)作为一种改进的线性回归方法,通过引入正则化项来防止模型过拟合,从而提高模型的泛化能力。

正文

数据加载与预处理

在本例中,我们使用pandas库加载了一个名为data.csv的数据集。数据集被分为特征集X和目标变量y。为了简化问题,我们只取前两列作为特征,并假设第三列是目标变量。

data = pd.read_csv('data.csv')
X = data.iloc[:, :2]  # 取前两列作为特征
y = data.iloc[:, 2]  # 取第三列作为目标变量
  • 1
  • 2
  • 3

接下来,我们使用train_test_split函数将数据集分为训练集和测试集,其中测试集占20%。这样做的目的是为了在模型训练完成后,能够在未见过的数据上评估模型性能。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  • 1

在进行模型训练之前,对特征进行标准化是很重要的。这可以通过StandardScaler实现,它将数据缩放到均值为0,标准差为1。

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
  • 1
  • 2
  • 3

模型选择与超参数优化

岭回归是一种通过引入L2正则化项来防止模型过拟合的线性回归方法。正则化项的强度由超参数alpha控制。为了找到最佳的alpha值,我们使用GridSearchCV进行超参数优化。

alpha_candidates = [1e-15, 1e-10, 1e-5, 1e-2, 1, 5, 10, 20]
grid_search = GridSearchCV(estimator=ridge, param_grid={'alpha': alpha_candidates}, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train_scaled, y_train)
  • 1
  • 2
  • 3

GridSearchCV通过交叉验证的方式在给定的参数网格中寻找最佳的参数组合。我们选择了5折交叉验证,并使用负均方误差作为评分指标,因为GridSearchCV默认寻找评分指标的最大值,而均方误差越小越好。

模型训练与评估

在找到最佳的alpha值后,我们使用这个值来训练最终的岭回归模型,并在测试集上进行预测。

best_alpha = grid_search.best_params_['alpha']
ridge_best = Ridge(alpha=best_alpha)
ridge_best.fit(X_train_scaled, y_train)
y_pred = ridge_best.predict(X_test_scaled)
  • 1
  • 2
  • 3
  • 4

为了评估模型性能,我们计算了均方误差(MSE),这是一个常用的回归评估指标。

mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error with best alpha: {mse}')
  • 1
  • 2

结果可视化

最后,我们通过绘制实际值与预测值的散点图来可视化模型的预测效果。理想情况下,预测值应该与实际值完全一致,即所有点都落在对角线上。

plt.scatter(y_test, y_pred, alpha=0.5)
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.title('Ridge Regression Prediction')
plt.plot(lims, lims, 'k--', alpha=0.75, zorder=0)
plt.grid(True)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

通过散点图,我们可以直观地看到模型的预测效果。如果大多数点都集中在对角线附近,那么模型的预测效果就比较好。
在这里插入图片描述

总结

本文介绍了如何使用岭回归模型对数据集进行分析,并展示了如何通过超参数优化来提高模型性能。其中使用了GridSearchCV来寻找最佳的alpha值,并使用均方误差作为评估指标。最后,我们通过可视化手段直观地展示了模型的预测效果。岭回归作为一种有效的正则化方法,在处理特征数量多或存在多重共线性的数据集时,能够提高模型的泛化能力。

整体代码

import pandas as pd
import numpy as np
from sklearn.model_se`在这里插入代码片`lection import train_test_split, GridSearchCV
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

# 1. 数据加载
data = pd.read_csv('data.csv')
X = data.iloc[:, :2]  # 取前两列作为特征
y = data.iloc[:, 2]  # 取第三列作为目标变量

# 2. 数据预处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 3. 使用GridSearchCV来优化alpha值
# 定义alpha值的候选范围
alpha_candidates = [1e-15, 1e-10, 1e-5, 1e-2, 1, 5, 10, 20]

# 创建岭回归模型
ridge = Ridge()

# 创建GridSearchCV对象
grid_search = GridSearchCV(estimator=ridge, param_grid={'alpha': alpha_candidates}, cv=5,
                           scoring='neg_mean_squared_error')

# 执行网格搜索
grid_search.fit(X_train_scaled, y_train)

# 获取最佳alpha值
best_alpha = grid_search.best_params_['alpha']
print(f"Best alpha: {best_alpha}")

# 使用最佳alpha值训练模型
ridge_best = Ridge(alpha=best_alpha)
ridge_best.fit(X_train_scaled, y_train)

# 进行预测
y_pred = ridge_best.predict(X_test_scaled)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error with best alpha: {mse}')

# 注意:这里使用的是负均方误差作为评分指标,因为GridSearchCV默认寻找最大值,而均方误差越小越好,所以取负值。

# 4. 可视化预测结果
plt.scatter(y_test, y_pred, alpha=0.5)  # 绘制实际值与预测值的散点图
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.title('Ridge Regression Prediction')

# 绘制理想情况的对角线
lims = [
    np.min([y_test.min(), y_pred.min()]),  # x轴最小值
    np.max([y_test.max(), y_pred.max()]),  # x轴最大值
]
plt.plot(lims, lims, 'k--', alpha=0.75, zorder=0)
plt.xlim(lims)
plt.ylim(lims)

# 显示图形
plt.grid(True)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68

66

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/560108
推荐阅读
相关标签
  

闽ICP备14008679号