赞
踩
分布式数据库是一种把数据分散存储在不同物理位置的数据库。
计算层:单机数据库中的sql层,用来对数据访问进行权限检查、路由访问,以及对计算结果的操作。
元数据层:记录了分布式数据库集群下有多少个存储节点,对应ip、端口等元数据信息是多少。当分布式数据库的计算层启动时,会先访问元数据层,获取所有集群信息,才能正确进行 SQL 的解析和路由等工作。另外,因为元数据信息存放在元数据层,那么分布式数据库的计算层可以有多个,用于实现性能的扩展。
存储层:用来存放数据,但存储层要和计算层在同一台服务器上,甚至不求在同一个进程中。
分布式数据库的优势是把数据打散到不同的服务器上,这种横向扩展的 Scale Out 能力,能解决单机数据库的性能与存储瓶颈。
从理论上来看,分布式数据库的性能可以随着计算层和存储层的扩展,做到性能的线性提升。
从可用性的角度看,如果存储层发生宕机,那么只会影响 1/N 的数据,N 取决于数据被打散到多少台服务器上。所以,分布式数据库的可用性对比单机会有很大提升,单机数据库要实现99.999% 的可用性或许很难,但是分布式数据库就容易多了。
当然,分布式数据库也存在缺点:正因为数据被打散了,分布式数据库会引入很多新问题,比如自增实现、索引设计、分布式事务等(这些将在后面的内容中具体介绍)。
单机mysql架构
原先客户端是通过 MySQL 通信协议访问 MySQL 数据库,MySQL 数据库会通过高可用技术做多副本,当发生宕机进行切换。
这时数据将打散存储在下方各个 MySQL 实例中,每份数据叫“分片(Shard)”。
在分布式 MySQL 架构下,客户端不再是访问 MySQL 数据库本身,而是访问一个分布式中间件。
这个分布式中间件的通信协议依然采用 MySQL 通信协议(因为原先客户端是如何访问的MySQL 的,现在就如何访问分布式中间件)。分布式中间件会根据元数据信息,自动将用户请求路由到下面的 MySQL 分片中,从而将存储存取到指定的节点。
另外,分布式 MySQL 数据库架构的每一层都要由高可用,保证分布式数据库架构的高可用性。
对于上层的分布式中间件,是可以平行扩展的:即用户可以访问多个分布式中间件,如果其中一个中间件发生宕机,那么直接剔除即可。
因为分布式中间件是无状态的,数据保存在元数据服务中,它的高可用设计比较容易。
对于元数据来说,虽然它的数据量不大,但数据非常关键,一旦宕机则可能导致中间件无法工作,所以,元数据要通过副本技术保障高可用。
最后,每个分片存储本身都有副本,通过我们之前学习的高可用技术,保证分片的可用性。也就是说,如果分片 1 的 MySQL 发生宕机,分片 1 的从服务器会接替原先的 MySQL 主服务器,继续提供服务。
但由于使用了分布式架构,那么即使分片 1 发生宕机,需要 60 秒的时间恢复,这段时间对于业务的访问来说,只影响了 1/N 的数据请求。
可以看到,分布式 MySQL 数据库架构实现了计算层与存储层的分离,每一层都可以进行 Scale Out 平行扩展,每一层又通过高可用技术,保证了计算层与存储层的连续性,大大提升了MySQL 数据库的性能和可靠性,为海量互联网业务服务打下了坚实的基础。
对表中的数据进行分片的时候,首先要选出分片键,用户可以通过这个字段水平拆分
CREATE TABLE `orders` ( `O_ORDERKEY` int NOT NULL, `O_CUSTKEY` int NOT NULL, `O_ORDERSTATUS` char(1) NOT NULL, `O_TOTALPRICE` decimal(15,2) NOT NULL, `O_ORDERDATE` date NOT NULL, `O_ORDERPRIORITY` char(15) NOT NULL, `O_CLERK` char(15) NOT NULL, `O_SHIPPRIORITY` int NOT NULL, `O_COMMENT` varchar(79) NOT NULL, PRIMARY KEY (`O_ORDERKEY`), KEY `idx_custkey_orderdate` (`O_CUSTKEY`,`O_ORDERDATE`), KEY `ORDERS_FK1` (`O_CUSTKEY`), KEY `idx_custkey_orderdate_totalprice` (`O_CUSTKEY`,`O_ORDERDATE`,`O_TOTALPRICE`), KEY `idx_orderdate` (`O_ORDERDATE`), KEY `idx_orderstatus` (`O_ORDERSTATUS`), CONSTRAINT `orders_ibfk_1` FOREIGN KEY (`O_CUSTKEY`) REFERENCES `customer` (`C_CUSTKEY`) ) ENGINE=InnoDB
单实例 MySQL 数据库在性能和存储容量上肯定无法满足“双 11、618 ”大促的要求,所以要改造成分布式数据库架构。
而第一步就是要对表选出一个分片键,然后进行分布式架构的设计。
对于上面的表orders,可以选择的分片键有:o_orderkey、o_orderdate、也可以是o_custkey。在选出分片键后,就要选择分片的算法,比较常见的有 RANGE 和 HASH 算法。
比如,表 orders,选择分片键 o_orderdate,根据函数 YEAR 求出订单年份,然后根据RANGE 算法进行分片,这样就能设计出基于 RANGE 分片算法的分布式数据库架构:
采用 RANGE 算法进行分片后,表 orders 中,1992 年的订单数据存放在分片 1 中、1993 年的订单数据存放在分片 2 中、1994 年的订单数据存放在分片 3中,依次类推,如果要存放新年份的订单数据,追加新的分片即可。
不过,RANGE 分片算法在分布式数据库架构中,是一种非常糟糕的算法,因为对于分布式架构,通常希望能解决传统单实例数据库两个痛点:
那么对于订单表 orders 的 RANGE 分片算法来说,你会发现以上两点都无法实现,因为当年的数据依然存储在一个分片上(即热点还是存在于一个数据节点上)。
如果继续拆细呢?比如根据每天进行 RANGE 分片?这样的确会好一些,但是对“双 11、618”这样的大促来说,依然是单分片在工作,热点依然异常集中。
所以在分布式架构中,RANGE 分区算法是一种比较糟糕的算法。但它也有好处:可以方便数据在不同机器间进行迁移(migrate),比如要把分片 2 中 1992 年的数据迁移到分片 1,直接将表进行迁移就行。
而对海量并发的 OLTP 业务来说,一般推荐用 HASH 的分区算法。这样分片的每个节点都可以有实时的访问,每个节点负载都能相对平衡,从而实现性能和存储层的线性可扩展
在上述分片算法中,分片键是 o_orderkey,总的分片数量是 4(即把原来 1 份数据打散到 4 张表中),具体来讲,分片算法是将 o_orderkey 除以 4 进行取模操作。
最终,将表orders 根据 HASH 算法进行分布式设计后的结果如下图所示:
可以看到,对于订单号除以 4,余数为 0 的数据存放在分片 1 中,余数为 1 的数据存放在分片 2 中,余数为 2 的数据存放在分片 3 中,以此类推。
这种基于 HASH 算法的分片设计才能较好地应用于大型互联网业务,真正做到分布式数据库架构弹性可扩展的设计要求。
但是,表 orders 分区键选择 o_orderkey 是最好地选择吗?并不是。
我们看一下库中的其他表,如表 customer、lineitem,这三张表应该是经常一起使用的,比如查询用户最近的订单明细。
如果用 o_orderkey 作分区键,那么 lineitem 可以用 l_orderkey 作为分区键,但这时会发现表customer 并没有订单的相关信息,即无法使用订单作为分片键。
如果表 customer 选择另一个字段作为分片键,那么业务数据无法做到单元化,也就是对于表customer、orders、lineitem,分片数据在同一数据库实例上。
所以,如果要实现分片数据的单元化,最好的选择是把用户字段作为分区键,在表 customer 中就是将 c_custkey 作为分片键,表orders 中将 o_custkey 作为分片键,表 lineitem 中将 l_custkey 作为分片键:
这样做的好处是:根据用户维度进行查询时,可以在单个分片上完成所有的操作,不用涉及跨分片的访问,如下面的 SQL:
SELECT * FROM orders
INNER JOIN lineitem ON o_orderkey = l_orderkey
INNER JOIN customer ON o_custkey = c_custkey
WHERE o_custkey = 1
ORDER BY o_orderdate DESC LIMIT 10
所以,分布式数据库架构设计的原则是:选择一个适合的分片键和分片算法,把数据打散,并且业务的绝大部分查询都是根据分片键进行访问。
那为什么互联网业务这么适合进行分布式架构的设计呢?因为互联网业务大部分是 To C 业务,分片键就是用户的 ID,业务的大部分访问都是根据用户 ID 进行查询,比如:
分片 = 实例 + 库 + 表 = ip@port:db_name:table_name
对于前面的表orders,假设根据 HASH 算法进行分片,那么可以进行如下的分库分表设计:
在这 4 种分库分表规则中,最推荐的是第 4 种,也是我们通常意义说的分库分表,这样做的好处有以下几点:
分布式数据库并不一定要求有很多个实例,最基本的要求是将数据进行打散分片。接着,用户可以根据自己的需要,进行扩缩容,以此实现数据库性能和容量的伸缩性。这才是分布式数据库真正的魅力所在。
对于上述的分布式数据库架构,一开始我们将 4 个分片数据存储在一个 MySQL 实例上,但是如果遇到一些大促活动,可以对其进行扩容,比如把 4 个分片扩容到 4 个MySQL实例上:
如果完成了大促活动,又可以对资源进行回收,将分片又都放到一台 MySQL 实例上,这就是对资源进行缩容。
总的来说,对分布式数据库进行扩缩容在互联网公司是一件常见的操作,比如对阿里来说,每年下半年 7 月开始,他们就要进行双 11 活动的容量评估,然后根据评估结果规划数据库的扩容。
一般来说,电商的双 11 活动后,还有双 12、新年、春节,所以一般会持续到过完年再对数据库进行缩容。接下来,我们来看看如何进行扩缩容。
扩缩容
在 HASH 分片的例子中,我们把数据分片到了 4 个节点,然而在生产环境中,为了方便之后的扩缩容操作,推荐一开始就把分片的数量设置为不少于 1000 个。
不用担心分片数量太多,因为分片 1 个还是 1000 个,管理方式都是一样的,但是 1000 个,意味着可以扩容到 1000 个实例上,对于一般业务来说,1000 个实例足够满足业务的需求了(BTW,网传阿里某核心业务的分布式数据库分片数量为 10000个)。
如果到了 1000 个分片依然无法满足业务的需求,这时能不能拆成 2000 个分片呢?从理论上来说是可以的,但是这意味着需要对一张表中的数据进行逻辑拆分,这个工作非常复杂,通常不推荐。
所以,一开始一定要设计足够多的分片。在实际工作中,我遇到很多次业务将分片数量从 32、64 拆成 256、512。每次这样的工作,都是扒一层皮,太不值得。所以,做好分布式数据库设计的工作有多重要!
那么扩容在 MySQL 数据库中如何操作呢?其实,本质是搭建一个复制架构,然后通过设置过滤复制,仅回放分片所在的数据库就行,这个数据库配置在从服务器上大致进行如下配置:
# 分片1从服务器配置
replicate_do_db ="tpch01"
所以在进行扩容时,首先根据下图的方式对扩容的分片进行过滤复制的配置:
然后再找一个业务低峰期,将业务的请求转向新的分片,完成最终的扩容操作:
对主键来说,要保证在所有分片中都唯一,它本质上就是一个全局唯一的索引。如果用大部分同学喜欢的自增作为主键,就会发现存在很大的问题。
因为自增并不能在插入前就获得值,而是要通过填 NULL 值,然后再通过函数 last_insert_id()获得自增的值。所以,如果在每个分片上通过自增去实现主键,可能会出现同样的自增值存在于不同的分片上。
比如,对于电商的订单表 orders,其表结构如下(分片键是o_custkey,表的主键是o_orderkey):
CREATE TABLE `orders` (
`O_ORDERKEY` int NOT NULL auto_increment,
`O_CUSTKEY` int NOT NULL,
`O_ORDERSTATUS` char(1) NOT NULL,
`O_TOTALPRICE` decimal(15,2) NOT NULL,
`O_ORDERDATE` date NOT NULL,
`O_ORDERPRIORITY` char(15) NOT NULL,
`O_CLERK` char(15) NOT NULL,
`O_SHIPPRIORITY` int NOT NULL,
`O_COMMENT` varchar(79) NOT NULL,
PRIMARY KEY (`O_ORDERKEY`),
KEY (`O_CUSTKEY`)
......
) ENGINE=InnoDB
如果把 o_orderkey 设计成上图所示的自增,那么很可能 o_orderkey 同为 1 的记录在不同的分片出现,如下图所示:
如果把 o_orderkey 设计成上图所示的自增,那么很可能 o_orderkey 同为 1 的记录在不同的分片出现,如下图所示:
所以,在分布式数据库架构下,尽量不要用自增作为表的主键,这也是我们在第一模块“表结构设计”中强调过的:自增性能很差、安全性不高、不适用于分布式架构。
讲到这儿,我们已经说明白了“自增主键”的所有问题,那么该如何设计主键呢?依然还是用全局唯一的键作为主键,比如 MySQL 自动生成的有序 UUID;业务生成的全局唯一键(比如发号器);或者是开源的 UUID 生成算法,比如雪花算法(但是存在时间回溯的问题)。
总之,用有序的全局唯一替代自增,是这个时代数据库主键的主流设计标准,如果你还停留在用自增做主键,或许代表你已经落后于时代发展了。
通过分片键可以把 SQL 查询路由到指定的分片,但是在现实的生产环境中,业务还要通过其他的索引访问表。
还是以前面的表 orders 为例,如果业务还要根据 o_orderkey 字段进行查询,比如查询订单 ID 为 1 的订单详情:
SELECT * FROM orders WHERE o_orderkey = 1
我们可以看到,由于分片规则不是分片键,所以需要查询 4 个分片才能得到最终的结果,如果下面有 1000 个分片,那么就需要执行 1000 次这样的 SQL,这时性能就比较差了。
我们可以看到,由于分片规则不是分片键,所以需要查询 4 个分片才能得到最终的结果,如果下面有 1000 个分片,那么就需要执行 1000 次这样的 SQL,这时性能就比较差了。
但是,我们知道 o_orderkey 是主键,应该只有一条返回记录,也就是说,o_orderkey 只存在于一个分片中。这时,可以有以下两种设计:
同一份数据,表 orders 根据 o_orderkey 为分片键,再做一个分库分表的实现;
在索引中额外添加分片键的信息。
这两种设计的本质都是通过冗余实现空间换时间的效果,否则就需要扫描所有的分片,当分片数据非常多,效率就会变得极差。
而第一种做法通过对表进行冗余,对于 o_orderkey 的查询,只需要在 o_orderkey = 1 的分片中直接查询就行,效率最高,但是设计的缺点又在于冗余数据量太大。
所以,改进的做法之一是实现一个索引表,表中只包含 o_orderkey 和分片键 o_custkey,如:
CREATE TABLE idx_orderkey_custkey (
o_orderkey INT
o_custkey INT,
PRIMARY KEY (o_orderkey)
)
如果这张索引表很大,也可以将其分库分表,但是它的分片键是 o_orderkey,如果这时再根据字段 o_orderkey 进行查询,可以进行类似二级索引的回表实现:先通过查询索引表得到记录 o_orderkey = 1 对应的分片键 o_custkey 的值,接着再根据 o_custkey 进行查询,最终定位到想要的数据,如:
SELECT * FROM orders WHERE o_orderkey = 1
=>
# step 1
SELECT o_custkey FROM idx_orderkey_custkey
WHERE o_orderkey = 1
# step 2
SELECT * FROM orders
WHERE o_custkey = ? AND o_orderkey = 1
这个例子是将一条 SQL 语句拆分成 2 条 SQL 语句,但是拆分后的 2 条 SQL 都可以通过分片键进行查询,这样能保证只需要在单个分片中完成查询操作。不论有多少个分片,也只需要查询 2个分片的信息,这样 SQL 的查询性能可以得到极大的提升。
通过索引表的方式,虽然存储上较冗余全表容量小了很多,但是要根据另一个分片键进行数据的存储,依然显得不够优雅。
因此,最优的设计,不是创建一个索引表,而是将分片键的信息保存在想要查询的列中,这样通过查询的列就能直接知道所在的分片信息。
如果我们将订单表 orders 的主键设计为一个字符串,这个字符串中最后一部分包含分片键的信息,如:
o_orderkey = string(o_orderkey + o_custkey)
那么这时如果根据 o_orderkey 进行查询:
SELECT * FROM Orders
WHERE o_orderkey = '1000-1';
由于字段 o_orderkey 的设计中直接包含了分片键信息,所以我们可以直接知道这个订单在分片1 中,直接查询分片 1 就行。
同样地,在插入时,由于可以知道插入时 o_custkey 对应的值,所以只要在业务层做一次字符的拼接,然后再插入数据库就行了。
这样的实现方式较冗余表和索引表的设计来说,效率更高,查询可以提前知道数据对应的分片信息,只需 1 次查询就能获取想要的结果。
这样实现的缺点是,主键值会变大一些,存储也会相应变大。但正如我们 05 讲说的,只要主键值是有序的,插入的性能就不会变差。而通过在主键值中保存分片信息,却可以大大提升后续的查询效率,这样空间换时间的设计,总体上看是非常值得的。
当然,这里我们谈的设计都是针对于唯一索引的设计,如果是非唯一的二级索引查询,那么非常可惜,依然需要扫描所有的分片才能得到最终的结果,如:
SELECT * FROM Orders
WHERE o_orderate >= ? o_orderdate < ?
分布式数据库架构设计的要求是业务的绝大部分请求能够根据分片键定位到 1 个分片上。
如果业务大部分请求都需要扫描所有分片信息才能获得最终结果,那么就不适合进行分布式架构的改造或设计。
在分布式数据库中,有时会有一些无法提供分片键的表,但这些表又非常小,一般用于保存一些全局信息,平时更新也较少,绝大多数场景仅用于查询操作。
例如 tpch 库中的表 nation,用于存储国家信息,但是在我们前面的 SQL 关联查询中,又经常会使用到这张表,对于这种全局表,可以在每个分片中存储,这样就不用跨分片地进行查询了。如下面的设计:
与主键一样,如果只是通过数据库表本身唯一约束创建的索引,则无法保证在所有分片中都是唯一的。
所以,在分布式数据库中,唯一索引一样要通过类似主键的 UUID 的机制实现,用全局唯一去替代局部唯一,但实际上,即便是单机的 MySQL 数据库架构,我们也推荐使用全局唯一的设计。因为你不知道,什么时候,你的业务就会升级到全局唯一的要求了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。