赞
踩
重点难题:如何构建结构方程模型对数据进行分析
结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学中的多变量问题,用来处理复杂的多变量数据及多变量互相影响的探究与分析。SEM是计量经济学、计量社会学与计量心理学等领域发展过程中的合成物,多元回归、因子分析和路径分析等这些常用的统计方法都只是结构方程模型中的一些特例。
线性相关分析: 线性相关分析指出两个随机变量之间的统计联系。两个变量地位平等,没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系。
线性回归分析: 线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。
结构方程模型分析: 结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显变量,也可能包含无法直接观测的潜变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,可以通过提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。
问题:
1、 因子分析、主成分分析、回归分析与结构方程模型之间的区别是什么?
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。