当前位置:   article > 正文

SM4 研究与实现_go sm4加密

go sm4加密

SM4

标准号:GB/T 32907-2016

SM4 分组对称加密算法,分组长度128位, 密钥长度128位; 实现参考论文,讲解的非常详细;以下列举几个易错点

  • 基于密钥扩展轮密钥,在传入密钥时就可以确定
  • 解密和加密都是一样流程,区别在于密钥;解密轮密钥是加密轮密钥的逆序
  • < < < 符号的含义 <<< 符号的含义 <<<符号的含义,该符号表示32位循环左移; 代码表示如下
func rol32(x uint32, n int) uint32 {
	return (x << n) | ((x & 0xffffffff) >> (32 - n))
}
  • 1
  • 2
  • 3

实现

SM4和AES很类似,保持在golang语言实现的统一性; 可参考golang aes 实现结构和逻辑; https://github.com/golang/go/blob/go1.17.13/src/crypto/aes/cipher.go#L32

目录结构

cryptox/sm4/     
              |-------const.go                     常量定义和常量公式定义      
              |-------sm4.go                       SM4实现源文件            
              |-------sm4_test.go               SM4单元测试             
              |-------block.go                      SM4数字签名生成逻辑
  • 1
  • 2
  • 3
  • 4
  • 5

代码实现

const.go
 package sm4

// GB/T 32907-2016
// http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=7803DE42D3BC5E80B0C3E5D8E873D56A

const BlockSize = 16

// GB/T 32907-2016 SBox
var sbox = [256]byte{
	0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
	0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
	0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
	0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
	0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
	0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
	0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
	0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
	0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
	0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
	0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
	0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
	0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
	0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
	0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
	0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48,
}

var (
	fk0 = uint32(0xa3b1bac6)
	fk1 = uint32(0x56aa3350)
	fk2 = uint32(0x677d9197)
	fk3 = uint32(0xb27022dc)
)

var ck = [32]uint32{
	0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
	0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
	0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
	0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
	0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
	0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
	0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
	0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279,
}

func delta(a uint32) uint32 {
	a = (uint32(sbox[byte(a>>24)]) << 24) | (a & 0x00ffffff)
	a = (uint32(sbox[byte(a>>16)]) << 16) | (a & 0xff00ffff)
	a = (uint32(sbox[byte(a>>8)]) << 8) | (a & 0xffff00ff)
	a = (uint32(sbox[byte(a)])) | (a & 0xffffff00)
	return a
}

func rol32(x uint32, n int) uint32 {
	return (x << n) | ((x & 0xffffffff) >> (32 - n))
}

func L1(a uint32) uint32 {
	return a ^ rol32(a, 2) ^ rol32(a, 10) ^ rol32(a, 18) ^ rol32(a, 24)
}

func L2(a uint32) uint32 {
	return a ^ rol32(a, 13) ^ rol32(a, 23)
}

func T1(a uint32) uint32 {
	return L1(delta(a))
}

func T2(a uint32) uint32 {
	return L2(delta(a))
}

func F(a, b, c, d, k uint32) uint32 {
	return a ^ T1(b^c^d^k)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
block.go
package sm4

import (
	"encoding/binary"
	"unsafe"
)

// GB/T 32907-2016
// http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
func encryptBlockGo(xk []uint32, dst, src []byte) {
	_ = src[15] // early bounds check
	s0 := binary.BigEndian.Uint32(src[0:4])
	s1 := binary.BigEndian.Uint32(src[4:8])
	s2 := binary.BigEndian.Uint32(src[8:12])
	s3 := binary.BigEndian.Uint32(src[12:16])

	for i := 0; i < 32; i++ {

		si := F(s0, s1, s2, s3, xk[i])

		s0 = s1
		s1 = s2
		s2 = s3
		s3 = si
	}

	_ = dst[15] // early bounds check
	binary.BigEndian.PutUint32(dst[0:4], s3)
	binary.BigEndian.PutUint32(dst[4:8], s2)
	binary.BigEndian.PutUint32(dst[8:12], s1)
	binary.BigEndian.PutUint32(dst[12:16], s0)
}

func expandEncKeyGo(key []byte) []uint32 {
	_ = key[15] // early bounds check
	s0 := binary.BigEndian.Uint32(key[0:4])
	s1 := binary.BigEndian.Uint32(key[4:8])
	s2 := binary.BigEndian.Uint32(key[8:12])
	s3 := binary.BigEndian.Uint32(key[12:16])

	k0 := s0 ^ fk0
	k1 := s1 ^ fk1
	k2 := s2 ^ fk2
	k3 := s3 ^ fk3

	rk := make([]uint32, 32)

	for i := 0; i < 32; i++ {
		x := k0 ^ T2(k1^k2^k3^ck[i])

		k0 = k1
		k1 = k2
		k2 = k3
		k3 = x

		rk[i] = x
	}
	return rk
}

func expandDecKeyGo(key []byte) []uint32 {
	_ = key[15] // early bounds check
	s0 := binary.BigEndian.Uint32(key[0:4])
	s1 := binary.BigEndian.Uint32(key[4:8])
	s2 := binary.BigEndian.Uint32(key[8:12])
	s3 := binary.BigEndian.Uint32(key[12:16])

	k0 := s0 ^ fk0
	k1 := s1 ^ fk1
	k2 := s2 ^ fk2
	k3 := s3 ^ fk3

	rk := make([]uint32, 32)

	for i := 0; i < 32; i++ {
		x := k0 ^ T2(k1^k2^k3^ck[i])

		k0 = k1
		k1 = k2
		k2 = k3
		k3 = x

		rk[31-i] = x
	}

	return rk
}

// copy from https://github.com/golang/go/blob/15da892a4950a4caac987ee72c632436329f62d5/src/crypto/internal/subtle/aliasing.go#L30
func inexactOverlap(x, y []byte) bool {
	if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
		return false
	}
	return anyOverlap(x, y)
}

func anyOverlap(x, y []byte) bool {
	return len(x) > 0 && len(y) > 0 &&
		uintptr(unsafe.Pointer(&x[0])) <= uintptr(unsafe.Pointer(&y[len(y)-1])) &&
		uintptr(unsafe.Pointer(&y[0])) <= uintptr(unsafe.Pointer(&x[len(x)-1]))
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
sm4.go
package sm4

import (
	"crypto/cipher"
	"strconv"
)

type sm4 struct {
	enc []uint32
	dec []uint32
}

type KeySizeError int

func (k KeySizeError) Error() string {
	return "cryptox/sm4: invalid key size " + strconv.Itoa(int(k))
}

//GB/T 32907-2016; SM4-128
func NewCipher(key []byte) (cipher.Block, error) {
	k := len(key)
	switch k {
	default:
		return nil, KeySizeError(k)
	case 16:
		break
	}
	return newCipher(key)
}

func newCipher(key []byte) (cipher.Block, error) {
	c := sm4{}
	c.enc = expandEncKeyGo(key)
	c.dec = expandDecKeyGo(key)
	return &c, nil
}

func (c *sm4) BlockSize() int { return BlockSize }

func (c *sm4) Encrypt(dst, src []byte) {
	if len(src) < BlockSize {
		panic("crypto/sm4: input not full block")
	}
	if len(dst) < BlockSize {
		panic("crypto/sm4: output not full block")
	}
	if inexactOverlap(dst[:BlockSize], src[:BlockSize]) {
		panic("crypto/sm4: invalid buffer overlap")
	}
	encryptBlockGo(c.enc, dst, src)
}

func (c *sm4) Decrypt(dst, src []byte) {
	if len(src) < BlockSize {
		panic("crypto/sm4: input not full block")
	}
	if len(dst) < BlockSize {
		panic("crypto/sm4: output not full block")
	}
	if inexactOverlap(dst[:BlockSize], src[:BlockSize]) {
		panic("crypto/sm4: invalid buffer overlap")
	}
	encryptBlockGo(c.dec, dst, src)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

遗留问题

SM4 是128位加密算法,但是对于加密很多数据时,需要填充数据,使其长度是128位的整数倍; 常见的填充方式;

  • NoPadding
  • PKCS5Padding
  • PKCS7Padding
  • ISO10126Padding
  • ISO7816-4Padding
  • ZeroBytePadding
  • X923Padding
  • TBCPadding(Trailing-Bit-Compliment)
  • PKCS1Padding

AES五种加密模式(CBC、ECB、CTR、OCF、CFB),那么SM4 也应该有该五种加密模式;

  • 电码本模式(Electronic Codebook Book (ECB))
  • 密码分组链接模式(Cipher Block Chaining (CBC))
  • 计算器模式(Counter (CTR));
  • 密码反馈模式(Cipher FeedBack (CFB))
  • 输出反馈模式(Output FeedBack (OFB))

待续。。。。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/647211
推荐阅读
相关标签
  

闽ICP备14008679号