赞
踩
目录
1. 思路:首次想到的解法:定义一个m+n长度的辅助数组,从头遍历这两个数组,谁小就放进辅助数组中并且对应往后走,最后使用memcpy函数将辅助数组内容拷贝到nums1中。这种解法容易想到,但是空间复杂度为O(m+n)。其次想到的解法:定义三个指针i,j,k,其中i指向nums1末尾的有效位,j指向nums2的末尾,k指向nums1的m+n-1位置。循环比较nums1[i]和nums2[j]的大小,谁大就拷贝至nums1[k]并且对应指针-1。当退出循环后,将两个数组中剩下的元素依次拷贝至nums1[k]中。
2. 代码:对应上面的第二种解法。
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) { int temp[m+n]; int i=m-1,j=n-1,k=nums1Size-1; while(j>=0 && i>=0){ if(nums2[j]>=nums1[i]){ nums1[k--]=nums2[j--]; }else{ nums1[k--]=nums1[i--]; } } while(i>=0) nums1[k--]=nums1[i--]; while(j>=0) nums1[k--]=nums2[j--]; }3. 优点:空间复杂度为O(1)且时间复杂度为O(m+n)。
4. 缺点:速度依旧不够快。
官方解法二和三分别对应上述我想到的第一种解法和第二种解法。官方解法一直接采用合并后排序的方法,调用了qsort函数。
合并两个有序数组,可以使用双指针法从后往前遍历,并将元素拷贝至目标位置。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。