当前位置:   article > 正文

NLP练习之RNN,使用pytorch_pytorch nlp 例子“”

pytorch nlp 例子“”
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable

dtype = torch.FloatTensor
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict)

# TextRNN Parameter
batch_size = len(sentences)
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell

def make_batch(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word_dict[n] for n in word[:-1]]
        target = word_dict[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)

    return input_batch, target_batch

# to Torch.Tensor
input_batch, target_batch = make_batch(sentences)
input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch))

class TextRNN(nn.Module):
    def __init__(self):
        super(TextRNN, self).__init__()

        self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
        self.W = nn.Parameter(torch.randn([n_hidden, n_class]).type(dtype))
        self.b = nn.Parameter(torch.randn([n_class]).type(dtype))

    def forward(self, hidden, X):
        X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
        outputs, hidden = self.rnn(X, hidden)
        # outputs : [n_step, batch_size, num_directions(=1) * n_hidden]
        # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        outputs = outputs[-1] # [batch_size, num_directions(=1) * n_hidden]
        model = torch.mm(outputs, self.W) + self.b # model : [batch_size, n_class]
        return model

model = TextRNN()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
# Training
for epoch in range(5000):
    optimizer.zero_grad()

    # hidden : [num_layers * num_directions, batch, hidden_size]
    hidden = Variable(torch.zeros(1, batch_size, n_hidden))
    # input_batch : [batch_size, n_step, n_class]
    output = model(hidden, input_batch)

    # output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
    loss = criterion(output, target_batch)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    loss.backward()
    optimizer.step()

input = [sen.split()[:2] for sen in sentences]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
Epoch: 1000 cost = 0.093737
Epoch: 2000 cost = 0.019396
Epoch: 3000 cost = 0.007374
Epoch: 4000 cost = 0.003475
Epoch: 5000 cost = 0.001815
  • 1
  • 2
  • 3
  • 4
  • 5
# Predict
hidden = Variable(torch.zeros(1, batch_size, n_hidden))
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])
  • 1
  • 2
  • 3
  • 4
[['i', 'like'], ['i', 'love'], ['i', 'hate']] -> ['dog', 'coffee', 'milk']
  • 1
predict = model(hidden, input_batch).data.max(1, keepdim=True)
  • 1
predict
  • 1
torch.return_types.max(
values=tensor([[5.0173],
        [6.9075],
        [7.0034]]),
indices=tensor([[6],
        [2],
        [3]]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
model(hidden, input_batch).data
  • 1
tensor([[-5.1532, -5.1055, -1.8884, -2.4166, -2.6780, -4.1201,  5.0173],
        [-2.0580, -4.5165,  6.9075, -0.1310, -2.3327, -5.6383, -0.6178],
        [-3.4542, -2.2183, -0.8452,  7.0034, -0.4539, -4.2388, -0.7064]])
  • 1
  • 2
  • 3
hidden.shape
  • 1
torch.Size([1, 3, 5])
  • 1
predict.shape
  • 1
torch.Size([3, 1])
  • 1
predict = model(hidden, input_batch)
  • 1
input_batch.shape
  • 1
torch.Size([3, 2, 7])
  • 1
predict.shape
  • 1
torch.Size([3, 7])
  • 1
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable

dtype = torch.FloatTensor

sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict)

# TextRNN Parameter
batch_size = len(sentences)
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell

def make_batch(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word_dict[n] for n in word[:-1]]
        target = word_dict[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)

    return input_batch, target_batch

# to Torch.Tensor
input_batch, target_batch = make_batch(sentences)
input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch))

class TextRNN(nn.Module):
    def __init__(self):
        super(TextRNN, self).__init__()

        self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
        self.W = nn.Parameter(torch.randn([n_hidden, n_class]).type(dtype))
        self.b = nn.Parameter(torch.randn([n_class]).type(dtype))

    def forward(self, hidden, X):
        X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
        outputs, hidden = self.rnn(X, hidden)
        # outputs : [n_step, batch_size, num_directions(=1) * n_hidden]
        # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        outputs = outputs[-1] # [batch_size, num_directions(=1) * n_hidden]
        model = torch.mm(outputs, self.W) + self.b # model : [batch_size, n_class]
        return model

model = TextRNN()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Training
for epoch in range(5000):
    optimizer.zero_grad()

    # hidden : [num_layers * num_directions, batch, hidden_size]
    hidden = Variable(torch.zeros(1, batch_size, n_hidden))
    # input_batch : [batch_size, n_step, n_class]
    output = model(hidden, input_batch)

    # output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
    loss = criterion(output, target_batch)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    loss.backward()
    optimizer.step()

input = [sen.split()[:2] for sen in sentences]

# Predict
hidden = Variable(torch.zeros(1, batch_size, n_hidden))
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
Epoch: 1000 cost = 0.064772
Epoch: 2000 cost = 0.014707
Epoch: 3000 cost = 0.005852
Epoch: 4000 cost = 0.002837
Epoch: 5000 cost = 0.001509
[['i', 'like'], ['i', 'love'], ['i', 'hate']] -> ['dog', 'coffee', 'milk']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/683189
推荐阅读
相关标签
  

闽ICP备14008679号