赞
踩
numpy.where (condition[, x, y])
numpy.where() 有两种用法:
满足条件(condition),输出x,不满足输出y。
如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
- >>> aa = np.arange(10)
- >>> np.where(aa,1,-1)
- array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
- >>> np.where(aa > 5,1,-1)
- array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
-
- >>> np.where([[True,False], [True,True]], # 官网上的例子
- [[1,2], [3,4]],
- [[9,8], [7,6]])
- array([[1, 8],
- [3, 4]])
上面这个例子的条件为[[True,False], [True,False]]
,分别对应最后输出结果的四个值。第一个值从[1,9]
中选,因为条件为True,所以是选1。第二个值从[2,8]
中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:
- >>> a = 10
- >>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
- [["chosen","not chosen"], ["chosen","not chosen"]],
- [["not chosen","chosen"], ["not chosen","chosen"]])
-
- array([['chosen', 'chosen'],
- ['chosen', 'chosen']], dtype='<U10')
只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
- >>> a = np.array([2,4,6,8,10])
- >>> np.where(a > 5) # 返回索引
- (array([2, 3, 4]),)
- >>> a[np.where(a > 5)] # 等价于 a[a>5]
- array([ 6, 8, 10])
-
- >>> np.where([[0, 1], [1, 0]])
- (array([0, 1]), array([1, 0]))
上面这个例子条件中[[0,1],[1,0]]
的真值为两个1,各自的第一维坐标为[0,1]
,第二维坐标为[1,0]
。
下面看个复杂点的例子:
- >>> a = np.arange(27).reshape(3,3,3)
- >>> a
- array([[[ 0, 1, 2],
- [ 3, 4, 5],
- [ 6, 7, 8]],
-
- [[ 9, 10, 11],
- [12, 13, 14],
- [15, 16, 17]],
-
- [[18, 19, 20],
- [21, 22, 23],
- [24, 25, 26]]])
-
- >>> np.where(a > 5)
- (array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
- array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
- array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
-
-
- # 符合条件的元素为
- [ 6, 7, 8]],
-
- [[ 9, 10, 11],
- [12, 13, 14],
- [15, 16, 17]],
-
- [[18, 19, 20],
- [21, 22, 23],
- [24, 25, 26]]]
所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。
/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。