当前位置:   article > 正文

Apollo9.0 PNC源码学习之Planning模块—— Lattice规划(0):Lattice论文_a real-time motion planner withtrajectory optimiza

a real-time motion planner withtrajectory optimization for autonomousvehicle

论文题目:A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles

Abstract

本文的实时规划器首先将空间离散化,然后基于一组成本函数搜索出最佳轨迹。迭代优化所得到的轨迹的Path和Speed。post-optimization计算复杂度低,能够在几次迭代内收敛到一个更高质量的解,该框架可以减少52%的规划时间,提高规划质量。

本文主要的创新点就在于post-optimization

I INTRODUCTION

A Background

规划器需要满足严格的实时要求,以便在紧急情况做出足够快的反应。

B Related work

Autonomous driving Systems:对自动驾驶系统的发展做了一些调研。单纯的自适应巡航控制系统和车道辅助系统无法执行复杂的驾驶行为(处理并车、绕开其他汽车、能够智能的对意外的动态障碍物作出反应),这些系统仍需要人类监督执行。
Trajectory generation:道路场景中自动驾驶的轨迹生成需要考虑三个约束:运动学、动力学和道路形状。具体来说,就是曲率和加速度的变化率在轨迹中应该是连续的
[3][4]提出了利用曲率多项式保证曲率变化率连续的逆路径生成方法。
(1)基于[3][4]的方法,[5][6]提出的规划器首先沿道

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/1011265
推荐阅读
相关标签
  

闽ICP备14008679号