赞
踩
最近在研究将各种数据集转换为不同AI框架的自有数据,这些框架包括Caffe,MXNet,Tensorflow等.C++这样一个通用而又强大的语言,却让使用C++的同鞋在AI时代有一个痛点,那就是目前的AI框架基本都是底层用C/C++实现,但提供的接口却大部分都是python的接口,而且Python的接口封装的都特别好,MXNet还好,提供im2rec.cc这样的C/C++源码,而Caffe,尤其是Tensorflow这样的框架,想用C++来转换数据就需要花点功夫了.所以本文首先讲解Tensorflow的数据集格式转换.
1.不同框架的数据分别是怎样的?
MXNet的自有数据集:rec格式
Caffe的自有据集:Lmdb格式
Tensorflow的自有数据集:TFRecord格式
2.什么是TFRecord格式?
关于tensorflow读取数据,官网给出了三种方法:
1、供给数据:在tensorflow程序运行的每一步,让python代码来供给数据
2、从文件读取数据:建立输入管线从文件中读取数据
3、预加载数据:如果数据量不太大,可以在程序中定义常量或者变量来保存所有的数据。
而tfrecord格式是Tensorflow官方推荐的标准格式。tfrecord数据文件是一种将图像数据和标签统一存储的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储等。
该数据集由一个example.proto文件定义:
syntax = "proto3";
message Example{
Features features = 1;
};
message Features{
map<string,Feature> feature = 1;
};
// Containers to hold repeated fundamental values.
message BytesList {
repeated bytes value = 1;
}
message FloatList {
repeated float value = 1 [packed = true];
}
message Int64List {
repeated int64 value = 1 [packed = true];
}
message Feature{
oneof kind{
BytesList bytes_list = 1;
FloatList float_list = 2;
Int64List int64_list = 3;
}
};
这是一个protobuf3的格式定义,需要使用以下命令通过该文件生成头文件example.pb.h和cc文件example.pb.cc:
protoc -I=. --cpp_out=./ example.proto
3.自有数据集该准备成什么样?
此处以VOC2007数据集为检测任务的例子讲解,LFW数据集为分类任务讲解.
对于分类任务,数据集统一构建一个这样的列表,该表的构建可以参考Caffe的分类任务列表的构建(文件名和标签中间不是空格,而是\t):
/output/oldFile/1000015_10/wKgB5Fr6WwWAJb7iAAABKohu5Nw109.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwWAEbg6AAABC_mxdD8880.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwWAUGTdAAAA8wVERrQ677.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwWAPJ-lAAABPYAoeuY242.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwWARVIWAAABCK2alGs331.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwWAV3R5AAAA5573dko147.png 0
/output/oldFile/1000015_10/wKgB5Fr6WwaAUjQRAAABIkYxqoY008.png 0
...
/output/oldFile/1000015_10/wKgB5Vr6YF-AALG-AAAA-qStI_Q208.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAe1VYAAABN5fz53Y240.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAQo7fAAABVFasXJ4223.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAL00yAAABJdrU4U0508.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAFjTyAAABJVgoCrU242.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAKmMMAAABMd1_pJg240.png 1
/output/oldFile/1000015_10/wKgB5Vr6YGCAR2FqAAABFCQ7LRY651.png 1
对于VOC2007数据集,构建的列表如下(文件名和标签中间不是空格,而是\t):
/home/test/data/VOC2007/JPEGImages/004379.jpg /home/xbx/data/VOC2007/Annotations/004379.xml
/home/test/data/VOC2007/JPEGImages/001488.jpg /home/xbx/data/VOC2007/Annotations/001488.xml
/home/test/data/VOC2007/JPEGImages/004105.jpg /home/xbx/data/VOC2007/Annotations/004105.xml
/home/test/data/VOC2007/JPEGImages/006146.jpg /home/xbx/data/VOC2007/Annotations/006146.xml
/home/test/data/VOC2007/JPEGImages/004295.jpg /home/xbx/data/VOC2007/Annotations/004295.xml
/home/test/data/VOC2007/JPEGImages/001360.jpg /home/xbx/data/VOC2007/Annotations/001360.xml
/home/test/data/VOC2007/JPEGImages/003468.jpg /home/xbx/data/VOC2007/Annotations/003468.xml
...
4.数据集转换的流程是怎样的?
数据列表准备好之后,就可以开始分析数据集转换的流程,大体上来说就是对于分类任务,首先初始化一个RecordWriter,然后处理列表中的数据,每一行对应一个Example,每行包含图片路径和相应的标签,使用OPENCV读取图片为Mat后,将其转换为string的格式(为什么不是char*,因为图像中可能存在\0),保存到Example中的feature中,map名称取为image_raw,并获取图片的宽高通道数,标签等信息,也都保存到Example中的feature中,map名分别为width,height,depth,label等,最后将每行的Example序列化SerializeToString为string,调用writer_->WriteRecord写入.对于检测任务区别则在于增加了对xml文件的解析,并保存bbox信息等.
需要用到的头文件包括:
- #include <fcntl.h>
- #include <stdio.h>
- #include <sys/stat.h>
- #include <sys/types.h>
- #include <unistd.h>
- #include <boost/foreach.hpp>
- #include <boost/property_tree/ptree.hpp>
- #include <boost/property_tree/xml_parser.hpp>
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <vector>
-
- #include "tensorflow/core/lib/core/status_test_util.h"
- #include "tensorflow/core/lib/core/stringpiece.h"
- #include "tensorflow/core/lib/io/record_writer.h"
-
- #include <boost/lexical_cast.hpp>
- #include "rng.hpp"
using namespace tensorflow::io;
using namespace tensorflow;
主函数的判断:
- if ((dataset_type == "object_detect") && (label_map_file.length() > 0)) {
- //检测任务,其中datalist_file是列表名,label_map_file是标签name和label的转换文件,output_dir是tfrecord需要输出的路径,output_name是tfrecord输出的文件名,samples_pre是tfrecord单个文件保存多少行,Shuffle是是否打乱
- if (!detecteddata_to_tfrecords(datalist_file, label_map_file, output_dir, output_name,
- samples_pre, Shuffle)) {
- printf("convert wrong!!!\n");
- return false;
- }
- } else if ((dataset_type == "classification") && (label_width > 0)) {
- //分类任务,其中datalist_file是列表名,output_dir是tfrecord需要输出的路径,output_name是tfrecord输出的文件名,samples_pre是tfrecord单个文件保存多少行,label_width是标签数目,对应单标签还是多标签,Shuffle是是否打乱
- if (!clsdata_to_tfrecords(datalist_file, output_dir, output_name, samples_pre, label_width,
- Shuffle)) {
- printf("convert wrong!!!\n");
- return false;
- }
- } else {
- printf(
- "dataset type is not object_detect or classification, or label_width [%lu], label_map_file "
- "[%s] is wrong!!!\n",
- label_width, label_map_file.c_str());
- return false;
- }
-
- // Optional: Delete all global objects allocated by libprotobuf.清理在各子函数中打开的protobuf资源
- google::protobuf::ShutdownProtobufLibrary();
对于分类任务,代码如下:
- bool clsdata_to_tfrecords(string datalist_file, string output_dir, string output_name,
- int samples_pre, size_t label_width, int Shuffle) {
- std::ifstream infile(datalist_file.c_str());
- std::string line;
- std::vector<std::pair<string, std::vector<int> > > dataset;
-
- //读取列表文件,并将信息保存到dataset中
- while (getline(infile, line)) {
- vector<string> tmp_str = param_split(line, "\t");
- std::string filename;
- std::vector<int> label_v;
- if (tmp_str.size() != (label_width + 1)) {
- std::cout << "line " << line << "has too many param!!!" << std::endl;
- return false;
- }
- for (size_t i = 0; i < (label_width + 1); ++i) {
- if (i == 0) {
- filename = tmp_str[0];
- } else {
- try {
- int label = boost::lexical_cast<int>(tmp_str[i]);
- label_v.push_back(label);
- } catch (boost::bad_lexical_cast& e) {
- printf("%s\n", e.what());
- return false;
- }
- }
- }
- if (filename.size() > 0) dataset.push_back(std::make_pair(filename, label_v));
- }
-
- //打乱数据集,该代码借用caffe中rng.hpp代码
- if (Shuffle) {
- printf("tensorflow task will be shuffled!!!");
- caffe::shuffle(dataset.begin(), dataset.end());
- }
-
- printf("A total of %lu images.\n", dataset.size());
-
- // create recordwriter
- std::unique_ptr<WritableFile> file;
-
- RecordWriterOptions options = RecordWriterOptions::CreateRecordWriterOptions("ZLIB");
-
- RecordWriter* writer_ = NULL;
-
- int j = 0, fidx = 0;
- size_t line_id = 0;
- for (line_id = 0; line_id < dataset.size(); ++line_id) {
- if (line_id == 0 || j > samples_pre) {
- //如果是第一次或者单个文件的tfrecord记录达到samples_pre上限,则重新初始化一个新的RecordWriter
- if (writer_ != NULL) {
- delete writer_;
- writer_ = NULL;
- }
-
- char output_file[1024];
- memset(output_file, 0, 1024);
-
- sprintf(output_file, "%s/%s_%03d.tfrecord", output_dir.c_str(), output_name.c_str(), fidx);
- printf("create new tfrecord file: [%s] \n", output_file);
-
- Status s = Env::Default()->NewWritableFile((string)output_file, &file);
- if (!s.ok()) {
- printf("create write record file [%s] wrong!!!\n", output_file);
- return false;
- }
-
- writer_ = new RecordWriter(file.get(), options);
- j = 0;
- fidx += 1;
- }
- //读取图片
- cv::Mat image = ReadImageToCVMat(dataset[line_id].first);
- //将Mat转为string的形式
- std::string image_b = matToBytes(image);
- int height = image.rows;
- int width = image.cols;
- int depth = image.channels();
-
- //每一条数据对应一个Example
- Example example1;
- Features* features1 = example1.mutable_features();
- ::google::protobuf::Map<string, Feature>* feature1 = features1->mutable_feature();
- Feature feature_tmp;
-
- feature_tmp.Clear();
- if (!bytes_feature(feature_tmp, image_b)) {
- printf("image: [%s] wrong\n", dataset[line_id].first.c_str());
- continue;
- }
-
- (*feature1)["image_raw"] = feature_tmp;
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, height)) {
- printf("image: [%s] , height [%d] wrong\n", dataset[line_id].first.c_str(), height);
- continue;
- }
- (*feature1)["height"] = feature_tmp;
-
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, width)) {
- printf("image: [%s] , width [%d] wrong\n", dataset[line_id].first.c_str(), width);
- continue;
- }
-
- (*feature1)["width"] = feature_tmp;
-
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, depth)) {
- printf("image: [%s] , depth [%d] wrong\n", dataset[line_id].first.c_str(), depth);
- continue;
- }
- (*feature1)["depth"] = feature_tmp;
-
- //此次默认分类数据集的label已经转化为了0,1,2,3,4,5这样的形式,否则此处需要加上name to label的转化代码
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, dataset[line_id].second)) {
- printf("image: [%s] wrong\n", dataset[line_id].first.c_str());
- continue;
- }
- (*feature1)["label"] = feature_tmp;
- //将example序列化为string,并写入Writer_
- std::string str;
- example1.SerializeToString(&str);
- writer_->WriteRecord(str);
- ++j;
-
- if (line_id % 1000 == 0) {
- printf("Processed %lu files.\n", line_id);
- }
- }
-
- printf("Processed %lu files.\n finished", line_id);
-
- if (writer_ != NULL) {
- delete writer_;
- writer_ = NULL;
- }
-
- return true;
- }
-
其中,matToBytes函数定义如下:
- std::string matToBytes(cv::Mat image) {
- int size = image.total() * image.elemSize();
- byte* bytes = new byte[size];
- memcpy(bytes, image.data, size * sizeof(byte));
-
- std::string img_s(bytes, size);
- return img_s;
- }
string转feature,或vector<int>转feature等定义如下:
- //函数重载,使得int和vector<int>都可以转换为feature
- bool int64_feature(Feature& feature, int value) {
- Int64List* i_list1 = feature.mutable_int64_list();
- i_list1->add_value(value);
- return true;
- }
- bool int64_feature(Feature& feature, std::vector<int> value) {
- if (value.size() < 1) {
- printf("value int64 is wrong!!!");
- return false;
- }
- Int64List* i_list1 = feature.mutable_int64_list();
- for (size_t i = 0; i < value.size(); ++i) i_list1->add_value(value[i]);
- return true;
- }
-
- bool float_feature(Feature& feature, std::vector<double> value) {
- if (value.size() < 1) {
- printf("value float is wrong!!!");
- return false;
- }
- FloatList* f_list1 = feature.mutable_float_list();
- for (size_t i = 0; i < value.size(); ++i) f_list1->add_value(value[i]);
- return true;
- }
-
- //将图像信息转换为feature
- bool bytes_feature(Feature& feature, std::string value) {
- BytesList* b_list1 = feature.mutable_bytes_list();
- //图像中含有0可能会存在问题
- b_list1->add_value(value);
- return true;
- }
对于检测任务,大体流程一致,列表读取代码有点差异,另外需要增加对xml文件的格式化处理,可以使用boost的xml解析,大体代码如下:
- bool ReadXMLToExapmle(const string& image_file, const string& xmlfile, const int img_height,
- const int img_width, const std::map<string, int>& name_to_label,
- RecordWriter* writer_) {
- //图像读取
- cv::Mat image = ReadImageToCVMat(image_file);
- if (!image.data) {
- cout << "Could not open or find file " << image_file;
- return false;
- }
- //将Mat转换为string
- std::string image_b = matToBytes(image);
-
- Example example1;
- Features* features1 = example1.mutable_features();
- ::google::protobuf::Map<string, Feature>* feature1 = features1->mutable_feature();
- Feature feature_tmp;
-
- feature_tmp.Clear();
- if (!bytes_feature(feature_tmp, image_b)) {
- printf("image: [%s] wrong\n", image_file.c_str());
- return false;
- ;
- }
-
- (*feature1)["image/encoded"] = feature_tmp;
-
- ptree pt;
- read_xml(xmlfile, pt);
-
- // Parse annotation.
- int width = 0, height = 0, depth = 0;
- try {
- height = pt.get<int>("annotation.size.height");
- width = pt.get<int>("annotation.size.width");
- depth = pt.get<int>("annotation.size.depth");
- } catch (const ptree_error& e) {
- std::cout << "when parsing " << xmlfile << ":" << e.what() << std::endl;
- height = img_height;
- width = img_width;
- return false;
- }
-
- feature_tmp.Clear();
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, height)) {
- printf("xml : [%s] 's height wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/height"] = feature_tmp;
-
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, width)) {
- printf("xml : [%s] 's width wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/width"] = feature_tmp;
-
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, depth)) {
- printf("xml : [%s] 's depth wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/depth"] = feature_tmp;
-
- std::vector<int> v_label;
- std::vector<int> v_difficult;
- std::vector<double> v_xmin;
- std::vector<double> v_ymin;
- std::vector<double> v_xmax;
- std::vector<double> v_ymax;
-
- BOOST_FOREACH (ptree::value_type& v1, pt.get_child("annotation")) {
- ptree pt1 = v1.second;
- if (v1.first == "object") {
- bool difficult = false;
- ptree object = v1.second;
- BOOST_FOREACH (ptree::value_type& v2, object.get_child("")) {
- ptree pt2 = v2.second;
- if (v2.first == "name") {
- string name = pt2.data();
- if (name_to_label.find(name) == name_to_label.end()) {
- std::cout << "file : [" << xmlfile << "] Unknown name: " << name << std::endl;
- return true;
- }
- int label = name_to_label.find(name)->second;
- v_label.push_back(label);
- } else if (v2.first == "difficult") {
- difficult = pt2.data() == "1";
- v_difficult.push_back(difficult);
- } else if (v2.first == "bndbox") {
- int xmin = pt2.get("xmin", 0);
- int ymin = pt2.get("ymin", 0);
- int xmax = pt2.get("xmax", 0);
- int ymax = pt2.get("ymax", 0);
-
- if ((xmin > width) || (ymin > height) || (xmax > width) || (ymax > height) ||
- (xmin < 0) || (ymin < 0) || (xmax < 0) || (ymax < 0)) {
- std::cout << "bounding box exceeds image boundary." << std::endl;
- return false;
- }
- v_xmin.push_back(xmin);
- v_ymin.push_back(ymin);
- v_xmax.push_back(xmax);
- v_ymax.push_back(ymax);
- }
- }
- }
- }
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, v_label)) {
- printf("xml : [%s]'s label wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/label"] = feature_tmp;
- feature_tmp.Clear();
- if (!int64_feature(feature_tmp, v_difficult)) {
- printf("xml : [%s]'s difficult wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/difficult"] = feature_tmp;
- feature_tmp.Clear();
- if (!float_feature(feature_tmp, v_xmin)) {
- printf("xml : [%s]'s v_xmin wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/xmin"] = feature_tmp;
- feature_tmp.Clear();
- if (!float_feature(feature_tmp, v_ymin)) {
- printf("xml : [%s]'s v_ymin wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/ymin"] = feature_tmp;
- feature_tmp.Clear();
- if (!float_feature(feature_tmp, v_xmax)) {
- printf("xml : [%s]'s v_xmax wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/xmax"] = feature_tmp;
- feature_tmp.Clear();
- if (!float_feature(feature_tmp, v_ymax)) {
- printf("xml : [%s]'s v_ymax wrong\n", xmlfile.c_str());
- return false;
- }
-
- (*feature1)["image/object/bbox/xmax"] = feature_tmp;
- //序列化example并写入writerrecord
- std::string str;
- example1.SerializeToString(&str);
-
- writer_->WriteRecord(str);
- return true;
- }
最终编译Makefile如下:
all:
rm -rf example.pb*
${PROTOBUF_HOME}/bin/protoc -I=. --cpp_out=./ example.proto
${PROTOBUF_HOME}/bin/protoc -I=. --cpp_out=./ label.proto
g++ -std=c++11 -o dataset_to_tfrecord dataset_to_tfrecord.cc example.pb.cc common.cpp -I/usr/local/opencv2/include -L/usr/local/opencv2/lib -L. -lopencv_core -lopencv_highgui -lopencv_imgproc -Itensorflow的路径 -Itensorflow的路径/bazel-genfiles -I${PROTOBUF_HOME}/include -I/usr/local/include/eigen3 -L${PROTOBUF_HOME}/lib -Ltensorflow的路径/bazel-bin/tensorflow/ -lprotobuf -ltensorflow_framework -I${JSONCPP_HOME}/include -L${JSONCPP_HOME}/lib -ljson_linux-gcc-5.4.0_libmt
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。