当前位置:   article > 正文

预训练模型的应用(pytorch)_预训练好的模型可以直接用于特征提取嘛

预训练好的模型可以直接用于特征提取嘛

预训练模型使用的场景


声明:该部分有部分参考,若有侵权,请及时告知

简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型。你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手。

场景一:数据集小,数据相似度高(与pre-trained model的训练数据相比而言)
在这种情况下,因为数据与预训练模型的训练数据相似度很高,因此我们不需要重新训练模型。我们只需要将输出层改制成符合问题情境下的结构就好。

我们使用预处理模型作为模式提取器。

比如说我们使用在ImageNet上训练的模型来辨认一组新照片中的小猫小狗。在这里,需要被辨认的图片与ImageNet库中的图片类似,但是我们的输出结果中只需要两项——猫或者狗。

在这个例子中,我们需要做的就是把dense layer和最终softmax layer的输出从1000个类别改为2个类别。

场景二:数据集小,数据相似度不高

在这种情况下,我们可以冻结预训练模型中的前k个层中的权重,然后重新训练后面的n-k个层,当然最后一层也需要根据相应的输出格式来进行修改。

因为数据的相似度不高,重新训练的过程就变得非常关键。而新数据集大小的不足,则是通过冻结预训练模型的前k层进行弥补。

场景三:数据集大,数据相似度不高

在这种情况下,因为我们有一个很大的数据集,所以神经网络的训练过程将会比较有效率。然而,因为实际数据与预训练模型的训练数据之间存在很大差异,采用预训练模型将不会是一种高效的方式。

因此最好的方法还是将预处理模型中的权重全都初始化后在新数据集的基础上重头开始训练。

场景四:数据集大,数据相似度高

这就是最理想的情况,采用预训练模型会变得非常高效。最好的运用方式是保持模型原有的结构和初始权重不变,随后在新数据集的基础上重新训练。

预训练模型的方法


特征提取

我们可以将预训练模型当做特征提取装置来使用。具体的做法是,将输出层去掉,然后将剩下的整个网络当做一个固定的特征提取机,从而应用到新的数据集中。

采用预训练模型的结构

我们还可以采用预训练模型的结构,但先将所有的权重随机化,然后依据自己的数据集进行训练。

训练特定层,冻结其他层

另一种使用预训练模型的方法是对它进行部分的训练。具体的做法是,将模型起始的一些层的权重保持不变,重新训练后面的层,得到新的权重。在这个过程中,我们可以多次进行尝试,从而能够依据结果找到frozen layers和retrain layers之间的最佳搭配。

如何使用与训练模型,是由数据集大小和新旧数据集(预训练的数据集和我们要解决的数据集)之间数据的相似度来决定的。

实现预训练模型的加载(pytorch


先附上pytorch官方中文文档torchvision的github地址

直接加载预训练模型

import torchvision.models as models

model = models.resnet101(pretrained=True)
  • 1
  • 2
  • 3

修改某一层

import torchvision.models as models
 
model = models.resnet101(pretrained=True)

model.fc = nn.Linear(2048, 120)  #120为样本分类数目,修改最后的分类的全连接层
model.conv1 = nn.Conv2d(3, 64,kernel_size=5, stride=2, padding=3, bias=False)   #修改中间层
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

加载部分预训练模型

#加载model,model是自己定义好的模型
resnet50 = models.resnet50(pretrained=True) 
model =Net(...) 
 
#读取参数 
pretrained_dict =resnet50.state_dict() 
model_dict = model.state_dict() 
 
#将pretrained_dict里不属于model_dict的键剔除掉 
pretrained_dict =  {k: v for k, v in pretrained_dict.items() if k in model_dict} 
 
# 更新现有的model_dict 
model_dict.update(pretrained_dict) 
 
# 加载我们真正需要的state_dict 
model.load_state_dict(model_dict)  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/124046
推荐阅读
相关标签
  

闽ICP备14008679号