当前位置:   article > 正文

tf.reduce_mean()用法总结

tf.reduce_mean

概述

tf.reduce_mean()用于计算tensor(张量)沿着指定的数轴(即tensor的某一维度)上的平均值,用作降维或者计算tensor的平均值。

用法

tf.reduce_mean(input_tensor, axis=None, keepdims=False, name=None)
  • 1

keep_dims为旧版写法
1.input_tensor:输入待降维的tensor
2.axis:指定的轴,默认为计算所有元素的均值
3.keepdims:是否降低维度,默认值为False。(当为True时,输出结果保持输入tensor的原状;当为False时,输出结果将会降低维度)
4.name:操作的名称

例子

import tensorflow as tf

X = np.array([[0, 1, 2], [3, 4, 5]])
Y = tf.cast(X, tf.float32)

mean_all = tf.reduce_mean(Y)

mean_0 = tf.reduce_mean(Y, axis=0)
mean_1 = tf.reduce_mean(Y, axis=1)
print(mean_all)
print(mean_0)
print(mean_1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

OUT:
在这里插入图片描述
参数keepdims设置为True时,保持原来tensor的维度

import tensorflow as tf

X = np.array([[0, 1, 2], [3, 4, 5]])
Y = tf.cast(X, tf.float32)

mean_all = tf.reduce_mean(Y, keepdims=True)

mean_0 = tf.reduce_mean(Y, axis=0, keepdims=True)
mean_1 = tf.reduce_mean(Y, axis=1, keepdims=True)
print(mean_all)
print(mean_0)
print(mean_1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

OUT:
在这里插入图片描述
希望这篇文章对大家的学习有所帮助!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/133121
推荐阅读
相关标签
  

闽ICP备14008679号