赞
踩
本帖主要是为了记录学习魔傀面具作者的热力图代码,YOLOV8-gradcam 热力图可视化 即插即用 不需要对源码做任何修改!_魔鬼面具的博客-CSDN博客
并将其适配批量处理,代码仅供参考,多海涵。
- import warnings
- warnings.filterwarnings('ignore')
- warnings.simplefilter('ignore')
- import torch, yaml, cv2, os, shutil
- import numpy as np
- np.random.seed(0)
- import matplotlib.pyplot as plt
- from tqdm import trange
- from PIL import Image
- from models.yolo import Model
- from utils.general import intersect_dicts
- from utils.augmentations import letterbox
- from utils.general import xywh2xyxy
- from pytorch_grad_cam import GradCAMPlusPlus, GradCAM, XGradCAM
- from pytorch_grad_cam.utils.image import show_cam_on_image
- from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
-
- class yolov5_heatmap:
- def __init__(self, weight, cfg, device, method, layer, backward_type, conf_threshold, ratio):
- device = torch.device(device)
- ckpt = torch.load(weight)
- model_names = ckpt['model'].names
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- model = Model(cfg, ch=3, nc=len(model_names)).to(device)
- csd = intersect_dicts(csd, model.state_dict(), exclude=['anchor']) # intersect
- model.load_state_dict(csd, strict=False) # load
- model.eval()
- print(f'Transferred {len(csd)}/{len(model.state_dict())} items')
-
- target_layers = [eval(layer)]
- method = eval(method)
-
- colors = np.random.uniform(0, 255, size=(len(model_names), 3)).astype(np.int)
- self.__dict__.update(locals())
-
- def post_process(self, result):
- logits_ = result[..., 4:]
- boxes_ = result[..., :4]
- sorted, indices = torch.sort(logits_[..., 0], descending=True)
- return logits_[0][indices[0]], xywh2xyxy(boxes_[0][indices[0]]).cpu().detach().numpy()
-
- """def draw_detections(self, box, color, name, img):
- xmin, ymin, xmax, ymax = list(map(int, list(box)))
- cv2.rectangle(img, (xmin, ymin), (xmax, ymax), tuple(int(x) for x in color), 2)
- cv2.putText(img, str(name), (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, tuple(int(x) for x in color), 2, lineType=cv2.LINE_AA)
- return img"""
- #此处控制是否显示预测框
-
- def __call__(self, img_path, save_path):
- # remove dir if exist
- if os.path.exists(save_path):
- shutil.rmtree(save_path)
- # make dir if not exist
- os.makedirs(save_path, exist_ok=True)
-
- # img process
- img = cv2.imread(img_path)
- img = letterbox(img)[0]
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = np.float32(img) / 255.0
- tensor = torch.from_numpy(np.transpose(img, axes=[2, 0, 1])).unsqueeze(0).to(self.device)
-
- # init ActivationsAndGradients
- grads = ActivationsAndGradients(self.model, self.target_layers, reshape_transform=None)
-
- # get ActivationsAndResult
- result = grads(tensor)
- activations = grads.activations[0].cpu().detach().numpy()
-
- # postprocess to yolo output
- post_result, post_boxes = self.post_process(result[0])
- for i in trange(int(post_result.size(0) * self.ratio)):
- if post_result[i][0] < self.conf_threshold:
- break
-
- self.model.zero_grad()
- if self.backward_type == 'conf':
- post_result[i, 0].backward(retain_graph=True)
- else:
- # get max probability for this prediction
- score = post_result[i, 1:].max()
- score.backward(retain_graph=True)
-
- # process heatmap
- gradients = grads.gradients[0]
- b, k, u, v = gradients.size()
- weights = self.method.get_cam_weights(self.method, None, None, None, activations, gradients.detach().numpy())
- weights = weights.reshape((b, k, 1, 1))
- saliency_map = np.sum(weights * activations, axis=1)
- saliency_map = np.squeeze(np.maximum(saliency_map, 0))
- saliency_map = cv2.resize(saliency_map, (tensor.size(3), tensor.size(2)))
- saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max()
- if (saliency_map_max - saliency_map_min) == 0:
- continue
- saliency_map = (saliency_map - saliency_map_min) / (saliency_map_max - saliency_map_min)
-
- # add heatmap and box to image
- cam_image = show_cam_on_image(img.copy(), saliency_map, use_rgb=True)
- """cam_image = self.draw_detections(post_boxes[i], self.colors[int(post_result[i, 1:].argmax())], f'{self.model_names[int(post_result[i, 1:].argmax())]} {post_result[i][0]:.2f}', cam_image)"""
- cam_image = Image.fromarray(cam_image)
- cam_image.save(f'{save_path}/{i}.png')
-
- def get_params():
- params = {
- 'weight': r'权重绝对地址',
- 'cfg': r'模型绝对地址',
- 'device': 'cuda:0',
- 'method': 'GradCAM', # GradCAMPlusPlus, GradCAM, XGradCAM
- 'layer': 'model.model[-2]',
- 'backward_type': 'class', # class or conf
- 'conf_threshold': 0.6, # 0.6
- 'ratio': 0.02 # 0.02-0.1
- }
- return params
-
- ################# 要使用热力图需要将YOLO.py文件中所有的inplace设置为False,默认是True #############################################
-
- if __name__ == '__main__':
- model = yolov5_heatmap(**get_params())
- #model(r'图片绝对地址', 'result')#单张处理
-
- path=r"图片绝对地址"
- print(path)
- path1 = os.listdir(path)
- for i1 in path1:
- i2="result/"+str(i1)
- i1=os.path.join(path,i1)
- model(i1,i2)#多张处理
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。