当前位置:   article > 正文

Jetson学习笔记(三):多种模型文件的调用部署_jetson trt模型调用

jetson trt模型调用

在这里插入图片描述

1.torch2trt–trt模型调用

通过torch2trt的官方代码找到加载这个trt文件封装好了的函数TRTModule,可直接通过model_trt.load_state_dict(torch.load(‘mode.trt’))得到。

from torch import TRTModule
engine_path='./trt模型地址'
def read_model():
    model_trt=TRTModule()
    model_trt.load_State_dict(torch.load(engine_path))
    return model_trt
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

2.onnx2trt–trt模型调用

import pycuda.driver as cuda
import pycuda.autoinit
import cv2,time
import numpy as np
import os
import tensorrt as trt
 
TRT_LOGGER = trt.Logger()
engine_file_path = "/home/z/Documents/face_detect_yolov4_yolov4tiny_ssd-master/yolov4-tiny.trt"
 
class HostDeviceMem(object):
    def __init__(self, host_mem, device_mem):
        self.host = host_mem
        self.device = device_mem
 
    def __str__(self):
        return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
 
    def __repr__(self):
        return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs. 分配引擎所需的所有缓冲区
def allocate_buffers(engine):
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    return inputs, outputs, bindings, stream
 
def do_inference_v2(context, bindings, inputs, outputs, stream):
    # Transfer input data to the GPU.
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    # Run inference.
    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.
    return [out.host for out in outputs]
        
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime,\
runtime.deserialize_cuda_engine(f.read()) as engine, engine.create_execution_context() as context:
    inputs, outputs, bindings, stream = allocate_buffers(engine)
    #print('Len of inputs:',len(inputs))
    #print('Len of outputs:',len(outputs))
    
    image = cv2.imread('4.jpg',cv2.IMREAD_GRAYSCALE)
    image=cv2.resize(image,(28,28))
    print(image.shape)
    image=image[np.newaxis,np.newaxis,:,:].astype(np.float32)
    inputs[0].host = image
    print('开始推理')
    start = time.time()
    trt_outputs =do_inference_v2(context, bindings=bindings, \
    	inputs=inputs, outputs=outputs, stream=stream)
    finish = time.time()
    #print('inference time {} sec'.format(finish - start))
    print(trt_outputs)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/136621
推荐阅读
  

闽ICP备14008679号