赞
踩
# CIFAR 10 ''' 完整的模型训练套路: ''' import torch.optim import torchvision from torch import nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from model import * # 1. 准备数据集 train_data = torchvision.datasets.CIFAR10('data',train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10('data',train=False, transform=torchvision.transforms.ToTensor(), download=True) # 数据集大小 train_data_size = len(train_data) test_data_size = len(test_data) print('训练数据集的长度为{}'.format(train_data_size)) print('测试数据集的长度为{}'.format(test_data_size)) # 2 利用DataLoader加载数据集 train_dataloader = DataLoader(train_data,batch_size=64) test_dataloader = DataLoader(test_data,batch_size=64) # 3 搭建神经网络 # 4 创建网络模型 tudui = Tudui() # 5 损失函数 loss_fn = nn.CrossEntropyLoss() # 6 优化器 1e-2=1x10^(-2) learning_rate = 0.01 optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate) # 7 设置训练网络的一些参数 total_train_step = 0 # 记录训练次数 total_test_step = 0 # 记录测试次数 epoch = 10 #训练轮数 # 添加tensorboard writer = SummaryWriter('logs_model') for i in range(epoch): print('-----------第{}轮训练开始-----------'.format(i+1)) # 训练开始 # 训练步骤开始 dropout batchNorm仅对某些层次有作用 tudui.train() for data in train_dataloader: imgs, targets = data output = tudui(imgs) #训练模型的预测输出 loss = loss_fn(output,targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 if total_train_step % 100 == 0: print('训练次数是{}时,loss是{}'.format(total_train_step,loss.item()))# 加了item() tensor变成了数字 writer.add_scalar('train_loss',loss.item(),total_train_step) # 训练完一轮,看是否训练好,有没有达到想要的需求,测试数据集中跑一篇看准确率或者损失 # 测试步骤开始 tudui.eval() total_test_loss = 0 total_accuracy = 0 # 测试不需要对梯度进行调整 with torch.no_grad(): for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) total_test_loss += loss.item() # accuracy 正确预测的样本数量 accuracy = (outputs.argmax(1) == targets).sum() total_accuracy += accuracy print('整体测试集上的loss是{}'.format(total_test_loss)) print('整体测试集上的正确率是{}'.format(total_accuracy/test_data_size)) writer.add_scalar('test_loss',total_test_loss,total_test_step) writer.add_scalar('test_accuracy', total_accuracy, total_test_step) total_test_step+=1 torch.save(tudui,'tudui_{}.pth'.format(i)) print('模型已保存') writer.close()
# model.py import torch from torch import nn # 3 搭建神经网络 class Tudui(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Conv2d(3,32,5,1,2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(1024,64), nn.Linear(64, 10) ) def forward(self,x): x = self.model(x) return x if __name__ == '__main__': tudui = Tudui() # 验证一下输入输出尺寸 input = torch.ones((64,3,32,32)) output = tudui(input) print(output.shape)
运行结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。