赞
踩
本文详细介绍Pod资源的各种yaml配置和原理
每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:
用户程序所在的容器,数量可多可少
Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:
可以以它为依据,评估整个Pod的健康状态
可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信( 这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,当前环境用的是Flannel)
下面是Pod常用的资源清单:
apiVersion: v1 #必选,版本号,例如v1 kind: Pod #必选,资源类型,例如 Pod metadata: #必选,元数据 name: string #必选,Pod名称 namespace: string #Pod所属的命名空间,默认为"default" labels: #自定义标签列表 - name: string spec: #必选,Pod中容器的详细定义 containers: #必选,Pod中容器列表 - name: string #必选,容器名称 image: string #必选,容器的镜像名称 imagePullPolicy: [ Always|Never|IfNotPresent ] #获取镜像的策略 command: [string] #容器的启动命令列表,如不指定,使用打包时使用的启动命令 args: [string] #容器的启动命令参数列表 workingDir: string #容器的工作目录 volumeMounts: #挂载到容器内部的存储卷配置 - name: string #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名 mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符 readOnly: boolean #是否为只读模式 ports: #需要暴露的端口库号列表 - name: string #端口的名称 containerPort: int #容器需要监听的端口号 hostPort: int #容器所在主机需要监听的端口号,默认与Container相同 protocol: string #端口协议,支持TCP和UDP,默认TCP env: #容器运行前需设置的环境变量列表 - name: string #环境变量名称 value: string #环境变量的值 resources: #资源限制和请求的设置 limits: #资源限制的设置 cpu: string #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数 memory: string #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数 requests: #资源请求的设置 cpu: string #Cpu请求,容器启动的初始可用数量 memory: string #内存请求,容器启动的初始可用数量 lifecycle: #生命周期钩子 postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启 preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止 livenessProbe: #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器 exec: #对Pod容器内检查方式设置为exec方式 command: [string] #exec方式需要制定的命令或脚本 httpGet: #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port path: string port: number host: string scheme: string HttpHeaders: - name: string value: string tcpSocket: #对Pod内个容器健康检查方式设置为tcpSocket方式 port: number initialDelaySeconds: 0 #容器启动完成后首次探测的时间,单位为秒 timeoutSeconds: 0 #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒 periodSeconds: 0 #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次 successThreshold: 0 failureThreshold: 0 securityContext: privileged: false restartPolicy: [Always | Never | OnFailure] #Pod的重启策略 nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上 nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上 imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定 - name: string hostNetwork: false #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络 volumes: #在该pod上定义共享存储卷列表 - name: string #共享存储卷名称 (volumes类型有很多种) emptyDir: {} #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值 hostPath: string #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录 path: string #Pod所在宿主机的目录,将被用于同期中mount的目录 secret: #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部 scretname: string items: - key: string path: string configMap: #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部 name: string items: - key: string path: string
# 可通过一个命令来查看每种资源的可配置项 # kubectl explain 资源类型 # 查看某种资源可以配置的一级属性 [root@master ~]# kubectl explain pod KIND: Pod VERSION: v1 DESCRIPTION: Pod is a collection of containers that can run on a host. This resource is created by clients and scheduled onto hosts. FIELDS: apiVersion <string> ... ... ... # kubectl explain 资源类型.属性 # 查看属性的子属性 [root@master ~]# kubectl explain pod.apiVersion KIND: Pod VERSION: v1 FIELD: apiVersion <string> DESCRIPTION: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:
apiVersion <string> 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到
kind <string> 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到
metadata <Object> 元数据,主要是资源标识和说明,常用的有name、namespace、labels等
spec <Object> 描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述
status <Object> 状态信息,里面的内容不需要定义,由kubernetes自动生成
在上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:
这一级目录主要来研究pod.spec.containers
属性,这也是pod配置中最为关键的一项配置。
[root@master ~]# kubectl explain pod.spec.containers
KIND: Pod
VERSION: v1
RESOURCE: containers <[]Object> # 数组,代表可以有多个容器
FIELDS:
name <string> # 容器名称
image <string> # 容器需要的镜像地址
imagePullPolicy <string> # 镜像拉取策略
command <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
args <[]string> # 容器的启动命令需要的参数列表
env <[]Object> # 容器环境变量的配置
ports <[]Object> # 容器需要暴露的端口号列表
resources <Object> # 资源限制和资源请求的设置
这里研究 容器名称和容器所需的镜像地址
,我这里偷懒直接写nginx,则默认是最新版的,实际上可以是image:nginx:1.17.2,后面是可以指定版本的
创建pod-base.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-base
namespace: dev
labels:
user: "wxf"
spec:
containers:
- name: nginx
image: nginx
- name: busybox
image: busybox
上面定义了一个比较简单Pod的配置,里面有两个容器:
# 创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-base.yaml pod/pod-base created # 查看Pod状况 # READY 1/2 : 表示当前Pod中有2个容器,其中1个准备就绪,1个未就绪 # RESTARTS : 重启次数,因为有1个容器故障了,Pod一直在重启试图恢复它 [root@master k8sYamlForCSDN]# kubectl get pods pod-base -n dev NAME READY STATUS RESTARTS AGE pod-base 1/2 CrashLoopBackOff 4 (67s ago) 3m51s # 可以通过describe查看内部的详情 # 此时已经运行起来了一个基本的Pod,虽然它暂时有问题 [root@master k8sYamlForCSDN]# kubectl describe pods pod-base -n dev ... ... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 4m28s default-scheduler Successfully assigned dev/pod-base to node2 Normal Pulling 4m28s kubelet Pulling image "nginx" Normal Pulled 4m12s kubelet Successfully pulled image "nginx" in 15.377460259s Normal Created 4m12s kubelet Created container nginx Normal Started 4m12s kubelet Started container nginx Normal Pulled 3m23s kubelet Successfully pulled image "busybox" in 15.343408906s Normal Pulling 2m53s (x4 over 4m12s) kubelet Pulling image "busybox" Normal Created 2m37s (x4 over 4m11s) kubelet Created container busybox Normal Started 2m37s (x4 over 4m11s) kubelet Started container busybox Warning BackOff 2m37s (x5 over 3m54s) kubelet Back-off restarting failed container
这里研究 镜像拉取策略
创建pod-imagepullpolicy.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-imagepullpolicy
namespace: dev
labels:
user: "wxf"
spec:
containers:
- name: nginx
image: nginx:1.17.1
imagePullPolicy: Always
- name: busybox
image: busybox
imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:
默认值说明:
如果镜像tag为具体版本号, 默认策略是:IfNotPresent
如果镜像tag为:latest(最终版本,后面没有指定版本就是最终版本) ,默认策略是always
# 创建Pod [root@master k8sYamlForCSDN]# kubectl create -f pod-imagepullpolicy.yaml pod/pod-imagepullpolicy created # 查看Pod详情 # 此时明显可以看到nginx镜像有一步Pulling image "nginx:1.17.1"的过程 [root@master k8sYamlForCSDN]# kubectl describe pods pod-imagepullpolicy -n dev ... ... ... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 15s default-scheduler Successfully assigned dev/pod-imagepullpolicy to node2 Normal Pulling 15s kubelet Pulling image "nginx:1.17.1" Normal Pulled 14s kubelet Successfully pulled image "nginx:1.17.1" in 660.919193ms Normal Created 14s kubelet Created container nginx Normal Started 14s kubelet Started container nginx Normal Pulling 14s kubelet Pulling image "busybox"
这里研究 启动命令command和args
在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?
原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。
创建pod-command.yaml文件,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-command namespace: dev labels: user: "wxf" spec: containers: - name: nginx image: nginx - name: busybox image: busybox command: - "/bin/sh" - "-c" - "touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"
command,用于在pod中的容器初始化完毕之后运行一个命令。
稍微解释下上面命令的意思:
“/bin/sh”,"-c", 以管理员身份使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间
# 创建pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-command.yaml pod/pod-command created # 查看Pod状态 # 此时发现两个pod都正常运行了 [root@master k8sYamlForCSDN]# kubectl get pods pod-command -n dev NAME READY STATUS RESTARTS AGE pod-command 2/2 Running 0 48s # 进入pod中的busybox容器,查看文件内容 # 补充一个命令: kubectl exec pod名称 -n 命名空间 -it -c 容器名称 /bin/sh 在容器内部执行命令 # 使用这个命令就可以进入某个容器的内部,然后进行相关操作了 # 比如,可以查看txt文件的内容 [root@master k8sYamlForCSDN]# kubectl exec pod-command -n dev -it -c busybox /bin/sh kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead. / # tail -f /tmp/hello.txt 12:16:37 12:16:40 12:16:43 # 查看创建busybox的详细信息 [root@master k8sYamlForCSDN]# kubectl describe pods pod-command -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 3m59s default-scheduler Successfully assigned dev/pod-command to node2 Normal Pulling 3m59s kubelet Pulling image "nginx" Normal Pulled 3m43s kubelet Successfully pulled image "nginx" in 15.369315258s Normal Created 3m43s kubelet Created container nginx Normal Started 3m43s kubelet Started container nginx Normal Pulling 3m43s kubelet Pulling image "busybox" Normal Pulled 3m28s kubelet Successfully pulled image "busybox" in 15.371156443s Normal Created 3m28s kubelet Created container busybox Normal Started 3m28s kubelet Started container busybox
特别说明:
通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
1 如果command和args均没有写,那么用Dockerfile的配置。
2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
这里研究 env
创建pod-env.yaml文件,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-env namespace: dev labels: user: "wxf" spec: containers: - name: busybox image: busybox command: - "/bin/sh" - "-c" - "touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;" env: - name: "username" value: "wxf" - name: "password" value: "123456"
env,环境变量,用于在pod中的容器设置环境变量。
这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。
# 创建Pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-env.yaml
pod/pod-env created
# 进入容器,输出环境变量
[root@master k8sYamlForCSDN]# kubectl exec pod-env -n dev -c busybox -it /bin/sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
/ # echo $username
wxf
/ # echo $password
123456
这里研究 ports
首先看下ports支持的子选项:
[root@master k8sYamlForCSDN]# kubectl explain pod.spec.containers.ports
KIND: Pod
VERSION: v1
RESOURCE: ports <[]Object>
FIELDS:
name <string> # 端口名称,如果指定,必须保证name在pod中是唯一的
containerPort<integer> # 容器要监听的端口(0<x<65536)
hostPort <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略)
hostIP <string> # 要将外部端口绑定到的主机IP(一般省略)
protocol <string> # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。
创建pod-ports.yaml,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-ports
namespace: dev
labels:
user: "wxf"
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
name: nginx-port
protocol: TCP
# 创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-ports.yaml pod/pod-ports created # 查看pod # 在下面可以明显看到配置信息 [root@master k8sYamlForCSDN]# kubectl describe pods pod-ports -n dev ... ... ... IP: 10.244.2.26 IPs: IP: 10.244.2.26 Containers: nginx: Container ID: docker://9c0673b9b8def40c1b5b98ac12472855498caccd1baf445a670eba74f36c1a2d Image: nginx Image ID: docker-pullable://docker.io/nginx@sha256:0d17b565c37bcbd895e9d92315a05c1c3c9a29f762b011a10c54a66cd53c9b31 Port: 80/TCP Host Port: 0/TCP State: Running Started: Tue, 01 Mar 2022 20:37:31 +0800 Ready: True Restart Count: 0 Environment: <none> ... ... ...
访问容器中的程序需要使用的是podIp:containerPort
容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:
limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动,持续等待资源
可以通过上面两个选项设置资源的上下限。
在这对cpu和memory的单位做一个说明:
cpu:core数,可以为整数或小数
memory: 内存大小,可以使用Gi、Mi、G、M等形式
接下来,编写一个测试案例,创建pod-resources.yaml
apiVersion: v1 kind: Pod metadata: name: pod-resources namespace: dev labels: user: "wxf" spec: containers: - name: nginx image: nginx resources: limits: cpu: "2" memory: "10Gi" requests: cpu: "1" memory: "10Mi"
# 运行Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-resources pod/pod-resources created # 查看发现pod运行正常 [root@master k8sYamlForCSDN]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pod-resources 1/1 Running 0 52s # 接下来,停止Pod [root@master k8sYamlForCSDN]# kubectl delete -f pod-resources pod "pod-resources" deleted # 编辑pod,修改resources.requests.memory的值为10Gi [root@master k8sYamlForCSDN]# vi pod-resources [root@master k8sYamlForCSDN]# kubectl apply -f pod-resources pod/pod-resources created # 查看Pod状态,发现Pod启动失败 [root@master k8sYamlForCSDN]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pod-resources 0/1 Pending 0 6s # 查看pod详情会发现,如下提示 [root@master k8sYamlForCSDN]# kubectl describe pods pod-resources -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 70s default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 Insufficient memory. # 即内存不足
我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:
pod创建过程
运行初始化容器(init container)过程
运行主容器(main container)
容器启动后钩子(post start)、容器终止前钩子(pre stop)
容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
pod终止过程
在整个生命周期中,Pod会出现5种状态(相位),分别如下:
pod的创建过程
用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer
apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端
apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动
scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer
node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer
apiServer将接收到的pod状态信息存入etcd中
pod的终止过程
初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:
初始化容器有很多的应用场景,下面列出的是最常见的几个:
接下来做一个案例,模拟下面这个需求:
假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器
为了简化测试,事先规定好mysql(192.168.109.201)
和redis(192.168.109.202)
服务器的地址
创建pod-initcontainer.yaml,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-initcontainer namespace: dev spec: containers: - name: nginx image: nginx ports: - containerPort: 80 initContainers: - name: test-mysql image: busybox command: [ 'sh', '-c', 'until ping 192.168.109.201 -c 1 ; do echo waiting for mysql...; sleep 2; done;' ] - name: test-redis image: busybox command: [ 'sh', '-c', 'until ping 192.168.109.202 -c 1 ; do echo waiting for redis...; sleep 2; done;' ]
# 创建pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-initcontainer.yaml pod/pod-initcontainer created # 查看pod状态 # 发现pod卡在启动第一个初始化容器过程中,后面的容器不会运行 [root@master k8sYamlForCSDN]# kubectl get pods pod-initcontainer -n dev NAME READY STATUS RESTARTS AGE pod-initcontainer 0/1 Init:0/2 0 53s [root@master k8sYamlForCSDN]# kubectl describe pods pod-initcontainer -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 78s default-scheduler Successfully assigned dev/pod-initcontainer to node2 Normal Pulling 77s kubelet Pulling image "busybox" Normal Pulled 77s kubelet Successfully pulled image "busybox" in 636.873889ms Normal Created 77s kubelet Created container test-mysql Normal Started 77s kubelet Started container test-mysql # 动态查看pod [root@master k8sYamlForCSDN]# kubectl get pods pod-initcontainer -n dev -w NAME READY STATUS RESTARTS AGE pod-initcontainer 0/1 Init:0/2 0 15s pod-initcontainer 0/1 Init:1/2 0 52s pod-initcontainer 0/1 Init:1/2 0 53s pod-initcontainer 0/1 PodInitializing 0 89s pod-initcontainer 1/1 Running 0 90s # 接下来新开一个shell,为当前服务器新增两个ip,观察pod的变化 [root@master ~]# ifconfig ens33:1 192.168.109.201 netmask 255.255.255.0 up [root@master ~]# ifconfig ens33:2 192.168.109.202 netmask 255.255.255.0 up
钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。
kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:
钩子处理器支持使用下面三种方式定义动作:
# 在spec.containers下
……
lifecycle:
postStart:
exec:
command:
- cat
- /tmp/healthy
……
# 在spec.containers下
……
lifecycle:
postStart:
tcpSocket:
port: 8080
……
# 在spec.containers下
……
lifecycle:
postStart:
httpGet:
scheme: HTTP #支持的协议,http或者https
host: 192.168.109.100 #主机地址
port: 80 #端口号
path: / #URI地址
……
接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml文件,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-hook-exec namespace: dev spec: containers: - name: nginx image: nginx ports: - containerPort: 80 lifecycle: postStart: exec: # 在容器启动的时候执行一个命令,修改掉nginx的默认首页内容 command: [ "/bin/sh", "-c", "echo postStart... > /usr/share/nginx/html/index.html" ] preStop: exec: # 在容器停止之前停止nginx服务 command: [ "/usr/sbin/nginx","-s","quit" ]
# 创建pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-hook-exec.yaml
pod/pod-hook-exec created
# 查看pod
[root@master k8sYamlForCSDN]# kubectl get pods pod-hook-exec -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-hook-exec 1/1 Running 0 59s 10.244.1.8 node1 <none> <none>
# 访问pod
[root@master k8sYamlForCSDN]# curl 10.244.1.8:80
postStart...
容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例" 摘除 ",不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:
liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器
readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量
livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。
上面两种探针目前均支持三种探测方式:
# 在spec.containers下
……
livenessProbe:
exec:
command:
- cat
- /tmp/healthy
……
# 在spec.containers下
……
livenessProbe:
tcpSocket:
port: 8080
……
# 在spec.containers下
……
livenessProbe:
httpGet:
scheme: HTTP #支持的协议,http或者https
host: 192.168.109.100 #主机地址
port: 80 #端口号
path: / #URI地址
……
下面以liveness probes为例,做几个演示:
方式一:Exec
创建pod-liveness-exec.yaml
apiVersion: v1 kind: Pod metadata: name: pod-liveness-exec namespace: dev spec: containers: - name: nginx image: nginx ports: - containerPort: 80 livenessProbe: exec: command: - "/bin/cat" - "/tmp/hello.txt" # 执行一个查看文件的命令
# 创建Pod并查看pod,发现是正常运行啊,别急,接着看下面 [root@master k8sYamlForCSDN]# kubectl apply -f pod-liveness-exec.yaml pod/pod-liveness-exec created [root@master k8sYamlForCSDN]# kubectl get pods pod-liveness-exec -n dev NAME READY STATUS RESTARTS AGE pod-liveness-exec 1/1 Running 0 22s # 查看Pod详情 [root@master k8sYamlForCSDN]# kubectl describe pods pod-liveness-exec -n dev Normal Created 22s kubelet Created container nginx Normal Started 22s kubelet Started container nginx Warning Unhealthy 8s (x2 over 18s) kubelet Liveness probe failed: /bin/cat: /tmp/hello.txt: No such file or directory # 等待一会 [root@master k8sYamlForCSDN]# kubectl describe pods pod-liveness-exec -n dev Warning Unhealthy 3m37s (x9 over 5m17s) kubelet Liveness probe failed: /bin/cat: /tmp/hello.txt: No such file or directory Normal Killing 3m37s (x3 over 4m57s) kubelet Container nginx failed liveness probe, will be restarted Normal Pulling 3m37s (x4 over 5m37s) kubelet Pulling image "nginx" Warning BackOff 28s (x11 over 2m37s) kubelet Back-off restarting failed container # 观察上面的信息就会发现nginx容器启动之后就进行了健康检查 # 检查失败之后,容器被kill掉,然后尝试进行重启(这是重启策略的作用,后面讲解) # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@master k8sYamlForCSDN]# kubectl get pods pod-liveness-exec -n dev NAME READY STATUS RESTARTS AGE pod-liveness-exec 1/1 Running 6 (2m6s ago) 6m16s # 接下来把原来的yaml中的command改成command: ["/bin/ls","/tmp/"],这是一个能用的命令 [root@master k8sYamlForCSDN]# kubectl apply -f pod-liveness-exec.yaml pod/pod-liveness-exec created [root@master k8sYamlForCSDN]# kubectl get pods pod-liveness-exec -n dev NAME READY STATUS RESTARTS AGE pod-liveness-exec 1/1 Running 0 30s [root@master k8sYamlForCSDN]# kubectl describe pods pod-liveness-exec -n dev Normal Started 39s kubelet Started container nginx # 可以看到正常运行了
方式二:TCPSocket
创建pod-liveness-tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-tcpsocket
namespace: dev
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
livenessProbe:
tcpSocket:
port: 8080 #容器暴露的是80,这里探测8080
# 创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-liveness-tcpsocket.yaml pod/pod-liveness-tcpsocket created # 查看Pod详情 [root@master k8sYamlForCSDN]# kubectl describe pods pod-liveness-tcpsocket -n dev Normal Pulled 15s kubelet Successfully pulled image "nginx" in 660.788982ms Warning Unhealthy 6s (x4 over 36s) kubelet Liveness probe failed: dial tcp 10.244.1.10:8080: connect: connection refused # 观察上面的信息,发现尝试访问8080端口,但是失败了 # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@master k8sYamlForCSDN]# kubectl get pods pod-liveness-tcpsocket -n dev NAME READY STATUS RESTARTS AGE pod-liveness-tcpsocket 1/1 Running 2 (37s ago) 107s # 当然接下来,可以修改成一个可以访问的端口,比如80,再试,结果就正常了......
方式三:HTTPGet
创建pod-liveness-httpget.yaml
apiVersion: v1 kind: Pod metadata: name: pod-liveness-httpget namespace: dev spec: containers: - name: nginx image: nginx ports: - containerPort: 80 livenessProbe: httpGet: scheme: HTTP #支持的协议,http或者https host: localhost #主机地址 port: 80 #端口号 path: /hello #URI地址,默认是没有这个路径的
创建pod,观察效果
# 创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-liveness-httpget.yaml pod/pod-liveness-httpget created # 查看Pod详情 [root@master k8sYamlForCSDN]# kubectl describe pods pod-liveness-tcpsocket -n dev Warning Unhealthy 9m24s (x9 over 11m) kubelet Liveness probe failed: dial tcp 10.244.1.10:8080: connect: connection refused Normal Killing 9m24s (x3 over 10m) kubelet Container nginx failed liveness probe, will be restarted # 观察上面信息,尝试访问路径,但是未找到,出现404错误 # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@master k8sYamlForCSDN]# kubectl get pods pod-liveness-httpget -n dev NAME READY STATUS RESTARTS AGE pod-liveness-httpget 0/1 CrashLoopBackOff 5 (54s ago) 4m44s # 当然接下来,可以修改成一个可以访问的路径path,比如/,再试,结果就正常了......
至此,已经使用liveness Probe演示了三种探测方式。
但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:
[root@master k8sYamlForCSDN]# kubectl explain pod.spec.containers.livenessProbe
FIELDS:
exec <Object>
tcpSocket <Object>
httpGet <Object>
initialDelaySeconds <integer> # 容器启动后等待多少秒执行第一次探测
timeoutSeconds <integer> # 探测超时时间。默认1秒,最小1秒
periodSeconds <integer> # 执行探测的频率。默认是10秒,最小1秒
failureThreshold <integer> # 连续探测失败多少次才被认定为失败。默认是3。最小值是1
successThreshold <integer> # 连续探测成功多少次才被认定为成功。默认是1
下面稍微配置两个,演示下效果即可:
apiVersion: v1 kind: Pod metadata: name: pod-liveness-httpget namespace: dev spec: containers: - name: nginx image: nginx ports: - name: nginx-port containerPort: 80 livenessProbe: httpGet: scheme: HTTP port: 80 path: / initialDelaySeconds: 30 # 容器启动后30s开始探测 timeoutSeconds: 5 # 探测超时时间为5s
在上面,一旦容器探测出现了问题,kubernetes就会对容器所在的Pod进行重启,其实这是由pod的重启策略决定的,pod的重启策略有 3 种,分别如下:
重启策略适用于pod对象中的所有容器,首次需要重启的容器,将在其需要时立即进行重启,随后再次需要重启的操作将由kubelet延迟一段时间后进行,且反复的重启操作的延迟时长以此为10s、20s、40s、80s、160s和300s,300s是最大延迟时长。
创建pod-restartpolicy.yaml:
apiVersion: v1 kind: Pod metadata: name: pod-liveness-httpget namespace: dev spec: containers: - name: nginx image: nginx ports: - containerPort: 80 livenessProbe: httpGet: scheme: HTTP #支持的协议,http或者https host: localhost #主机地址 port: 80 #端口号 path: /hello #URI地址,默认是没有这个路径的 restartPolicy: Never # 设置重启策略为Never
# 创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-restartpolicy.yaml pod/pod-restartpolicy created [root@master k8sYamlForCSDN]# kubectl get pods pod-restartpolicy -n dev NAME READY STATUS RESTARTS AGE pod-restartpolicy 1/1 Running 0 41s # 多等一会,再观察pod的重启次数,发现一直是0,并未重启 [root@master k8sYamlForCSDN]# kubectl get pods pod-restartpolicy -n dev NAME READY STATUS RESTARTS AGE pod-restartpolicy 0/1 Completed 0 45s # 查看Pod详情,发现nginx容器失败 [root@master k8sYamlForCSDN]# kubectl describe pods pod-restartpolicy -n dev Normal Created 38s kubelet Created container nginx Normal Started 38s kubelet Started container nginx Warning Unhealthy 14s (x3 over 34s) kubelet Liveness probe failed: Get "http://localhost:80/hello": dial tcp [::1]:80: connect: connection refused Normal Killing 14s kubelet Stopping container nginx
在默认情况下,一个Pod在哪个Node节点上运行,是由Scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的。但是在实际使用中,这并不满足的需求,因为很多情况下,我们想控制某些Pod到达某些节点上,那么应该怎么做呢?这就要求了解kubernetes对Pod的调度规则,kubernetes提供了四大类调度方式:
定向调度,指的是利用在pod上声明nodeName或者nodeSelector,以此将Pod调度到期望的node节点上。注意,这里的调度是强制的,这就意味着即使要调度的目标Node不存在,也会向上面进行调度,只不过pod运行失败而已。
NodeName用于强制约束将Pod调度到指定的Name的Node节点上。这种方式,其实是直接跳过Scheduler的调度逻辑,直接将Pod调度到指定名称的节点。
接下来,实验一下:创建一个pod-nodename.yaml文件
apiVersion: v1
kind: Pod
metadata:
name: pod-nodename
namespace: dev
spec:
containers:
- name: nginx
image: nginx
nodeName: node1 # 指定调度到node1节点上,注意,nodename是pod是属性
#创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodename.yaml pod/pod-nodename created #查看Pod调度到NODE属性,确实是调度到了node1节点上 [root@master k8sYamlForCSDN]# kubectl get pods pod-nodename -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-nodename 1/1 Running 0 45s 10.244.1.11 node1 <none> <none> # 接下来,删除pod,修改nodeName的值为node3(并没有node3节点) [root@master k8sYamlForCSDN]# kubectl delete -f pod-nodename.yaml pod "pod-nodename" deleted [root@master k8sYamlForCSDN]# vi pod-nodename.yaml [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodename.yaml pod/pod-nodename created #再次查看,发现已经向Node3节点调度,但是由于不存在node3节点,所以pod无法正常运行 [root@master k8sYamlForCSDN]# kubectl get pods pod-nodename -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-nodename 0/1 Pending 0 3s <none> node3 <none> <none>
NodeSelector用于将pod调度到添加了指定标签的node节点上。它是通过kubernetes的label-selector机制实现的,也就是说,在pod创建之前,会由scheduler使用MatchNodeSelector调度策略进行label匹配,找出目标node,然后将pod调度到目标节点,该匹配规则是强制约束。
接下来,实验一下:
1 首先分别为node节点添加标签
[root@master k8sYamlForCSDN]# kubectl label nodes node1 nodeenv=pro
node/node1 labeled
[root@master k8sYamlForCSDN]# kubectl label nodes node2 nodeenv=test
node/node2 labeled
2 创建一个pod-nodeselector.yaml文件,并使用它创建Pod
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeselector
namespace: dev
spec:
containers:
- name: nginx
image: nginx
nodeSelector:
nodeenv: pro # 指定调度到具有nodeenv=pro标签的节点上
#创建Pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodeselector.yaml pod/pod-nodeselector created #查看Pod调度到NODE属性,确实是调度到了node1节点上 [root@master k8sYamlForCSDN]# kubectl get pods pod-nodeselector -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-nodeselector 1/1 Running 0 41s 10.244.1.12 node1 <none> <none> # 接下来,删除pod,修改nodeSelector的值为nodeenv: xxxx(不存在打有此标签的节点) [root@master ~]# kubectl delete -f pod-nodeselector.yaml [root@master k8sYamlForCSDN]# kubectl delete -f pod-nodeselector.yaml pod "pod-nodeselector" deleted [root@master k8sYamlForCSDN]# vi pod-nodeselector.yaml [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodeselector.yaml pod/pod-nodeselector created # 再次查看,发现pod无法正常运行,Node的值为none [root@master k8sYamlForCSDN]# kubectl get pods pod-nodeselector -n dev NAME READY STATUS RESTARTS AGE pod-nodeselector 0/1 Pending 0 25s # 查看详情,发现node selector匹配失败的提示 [root@master k8sYamlForCSDN]# kubectl describe pods pod-nodeselector -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 7s (x2 over 92s) default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 node(s) didn't match Pod's node affinity/selector.
上面介绍了两种定向调度的方式,使用起来非常方便,但是也有一定的问题,那就是如果没有满足条件的Node,那么Pod将不会被运行,即使在集群中还有可用Node列表也不行,这就限制了它的使用场景。
基于上面的问题,kubernetes还提供了一种亲和性调度(Affinity)。它在NodeSelector的基础之上的进行了扩展,可以通过配置的形式,实现优先选择满足条件的Node进行调度,如果没有,也可以调度到不满足条件的节点上,使调度更加灵活。
Affinity主要分为三类:
nodeAffinity(node亲和性): 以node为目标,解决pod可以调度到哪些node的问题
podAffinity(pod亲和性) : 以pod为目标,解决pod可以和哪些已存在的pod部署在同一个拓扑域中的问题
podAntiAffinity(pod反亲和性) : 以pod为目标,解决pod不能和哪些已存在pod部署在同一个拓扑域中的问题
关于亲和性(反亲和性)使用场景的说明:
亲和性:如果两个应用频繁交互,那就有必要利用亲和性让两个应用的尽可能的靠近,这样可以减少因网络通信而带来的性能损耗。
反亲和性:当应用的采用多副本部署时,有必要采用反亲和性让各个应用实例打散分布在各个node上,这样可以提高服务的高可用性。
首先来看一下NodeAffinity
的可配置项:
pod.spec.affinity.nodeAffinity requiredDuringSchedulingIgnoredDuringExecution Node节点必须满足指定的所有规则才可以,相当于硬限制(必须) nodeSelectorTerms 节点选择列表 matchFields 按节点字段列出的节点选择器要求列表 matchExpressions 按节点标签列出的节点选择器要求列表(推荐) key 键 values 值 operator 关系符 支持Exists, DoesNotExist, In, NotIn, Gt, Lt preferredDuringSchedulingIgnoredDuringExecution 优先调度到满足指定的规则的Node,相当于软限制 (倾向) preference 一个节点选择器项,与相应的权重相关联 matchFields 按节点字段列出的节点选择器要求列表 matchExpressions 按节点标签列出的节点选择器要求列表(推荐) key 键 values 值 operator 关系符 支持In, NotIn, Exists, DoesNotExist, Gt, Lt weight 倾向权重,在范围1-100。
关系符的使用说明:
- matchExpressions:
- key: nodeenv # 匹配存在标签的key为nodeenv的节点
operator: Exists
- key: nodeenv # 匹配标签的key为nodeenv,且value是"xxx"或"yyy"的节点
operator: In
values: ["xxx","yyy"]
- key: nodeenv # 匹配标签的key为nodeenv,且value大于"xxx"的节点
operator: Gt
values: "xxx"
接下来首先演示一下requiredDuringSchedulingIgnoredDuringExecution
,
创建pod-nodeaffinity-required.yaml
apiVersion: v1 kind: Pod metadata: name: pod-nodeaffinity-required namespace: dev spec: containers: - name: nginx image: nginx affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: nodeenv operator: In values: ["xxx","yyy"]
#查看node标签 [root@master k8sYamlForCSDN]# kubectl get nodes --show-labels NAME STATUS ROLES AGE VERSION LABELS master Ready control-plane,master 45h v1.23.4 node1 Ready <none> 45h v1.23.4 nodeenv=pro node2 Ready <none> 45h v1.23.4 nodeenv=test # 创建pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodeaffinity-required.yaml pod/pod-nodeaffinity-required created # 查看pod状态 (运行失败) [root@master k8sYamlForCSDN]# kubectl get pods pod-nodeaffinity-required -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-nodeaffinity-required 0/1 Pending 0 58s <none> <none> <none> <none> # 查看Pod的详情 # 发现调度失败,提示node选择失败 [root@master k8sYamlForCSDN]# kubectl describe pods pod-nodeaffinity-required -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 76s default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 node(s) didn't match Pod's node affinity/selector. #接下来,停止pod [root@master k8sYamlForCSDN]# kubectl delete -f pod-nodeaffinity-required.yaml pod "pod-nodeaffinity-required" deleted # 修改文件,将values: ["xxx","yyy"]------> ["pro","yyy"] [root@master k8sYamlForCSDN]# vi pod-nodeaffinity-required.yaml # 再次启动 [root@master k8sYamlForCSDN]# kubectl apply -f pod-nodeaffinity-required.yaml pod/pod-nodeaffinity-required created # 此时查看,发现调度成功,已经将pod调度到了node1上 [root@master k8sYamlForCSDN]# kubectl get pods pod-nodeaffinity-required -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-nodeaffinity-required 1/1 Running 0 17s 10.244.1.13 node1 <none> <none>
接下来再演示一下preferredDuringSchedulingIgnoredDuringExecution
,
创建pod-nodeaffinity-preferred.yaml
apiVersion: v1 kind: Pod metadata: name: pod-nodeaffinity-preferred namespace: dev spec: containers: - name: nginx image: nginx affinity: nodeAffinity: preferredDuringSchedulingIgnoredDuringExecution: - preference: matchExpressions: - key: nodeenv operator: In values: - "pro" weight: 1 - preference: matchExpressions: - key: nodeenv operator: In values: - "test" weight: 2
# 创建pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-nodeaffinity-preferred.yaml
pod/pod-nodeaffinity-preferred created
# 查看pod状态 (运行成功)
[root@master k8sYamlForCSDN]# kubectl get pods pod-nodeaffinity-preferred -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodeaffinity-preferred 1/1 Running 0 47s 10.244.2.34 node2 <none> <none>
NodeAffinity规则设置的注意事项:
1 如果同时定义了nodeSelector和nodeAffinity,那么必须两个条件都得到满足,Pod才能运行在指定的Node上
2 如果nodeAffinity指定了多个matchExpressions,那么只需要其中一个能够匹配成功即可
3 如果一个matchExpressions中有多个key ,则一个节点必须满足所有的才能匹配成功
4 如果一个pod所在的Node在Pod运行期间其标签发生了改变,不再符合该Pod的节点亲和性需求,则系统将忽略此变化
PodAffinity主要实现以运行的Pod为参照,实现让新创建的Pod跟参照pod在一个区域的功能。
首先来看一下PodAffinity
的可配置项:
pod.spec.affinity.podAffinity requiredDuringSchedulingIgnoredDuringExecution 硬限制 namespaces 指定参照pod的namespace topologyKey 指定调度作用域 labelSelector 标签选择器 matchExpressions 按节点标签列出的节点选择器要求列表(推荐) key 键 values 值 operator 关系符 支持In, NotIn, Exists, DoesNotExist. matchLabels 指多个matchExpressions映射的内容 preferredDuringSchedulingIgnoredDuringExecution 软限制 podAffinityTerm 选项 namespaces topologyKey labelSelector matchExpressions key 键 values 值 operator matchLabels weight 倾向权重,在范围1-100
topologyKey用于指定调度时作用域,例如:
如果指定为kubernetes.io/hostname,那就是以Node节点为区分范围
如果指定为beta.kubernetes.io/os,则以Node节点的操作系统类型来区分
接下来,演示下requiredDuringSchedulingIgnoredDuringExecution
,
1)首先创建一个参照Pod,pod-podaffinity-target.yaml:
apiVersion: v1
kind: Pod
metadata:
name: pod-podaffinity-target
namespace: dev
labels:
podenv: pro #设置标签
spec:
containers:
- name: nginx
image: nginx
nodeName: node1 # 将目标pod名确指定到node1上
# 启动目标pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-podaffinity-target.yaml
pod/pod-podaffinity-target created
# 查看pod状况
[root@master k8sYamlForCSDN]# kubectl get pods pod-podaffinity-target -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod-podaffinity-target 1/1 Running 0 63s 10.244.1.14 node1
2)创建pod-podaffinity-required.yaml,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-podaffinity-required namespace: dev spec: containers: - name: nginx image: nginx affinity: podAffinity: requiredDuringSchedulingIgnoredDuringExecution: - topologyKey: kubernetes.io/hostname labelSelector: matchExpressions: - key: podenv operator: In values: - "xxx"
上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=xxx的pod在同一Node上,显然现在没有这样pod,接下来,运行测试一下。
# 启动pod [root@master k8sYamlForCSDN]# kubectl apply -f pod-podaffinity-required.yaml pod/pod-podaffinity-required created # 查看pod状态,发现未运行 [root@master k8sYamlForCSDN]# kubectl get pods pod-podaffinity-required -n dev NAME READY STATUS RESTARTS AGE pod-podaffinity-required 0/1 Pending 0 103s # 查看详细信息 [root@master k8sYamlForCSDN]# kubectl describe -f pod-podaffinity-required.yaml Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 45s (x2 over 2m13s) default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 node(s) didn't match pod affinity rules. # 接下来修改 values: ["xxx"]----->values:["pro"] # 意思是:新Pod必须要与拥有标签podenv=pro的pod在同一Node上 [root@master k8sYamlForCSDN]# kubectl delete -f pod-podaffinity-required.yaml pod "pod-podaffinity-required" deleted [root@master k8sYamlForCSDN]# vi pod-podaffinity-required.yaml # 然后重新创建pod,查看效果 [root@master k8sYamlForCSDN]# kubectl apply -f pod-podaffinity-required.yaml pod/pod-podaffinity-required created # 发现此时Pod运行正常 [root@master k8sYamlForCSDN]# kubectl get pods pod-podaffinity-required -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE pod-podaffinity-required 1/1 Running 0 34s 10.244.1.16 node1
关于PodAffinity
的 preferredDuringSchedulingIgnoredDuringExecution
,这里不再演示。
PodAntiAffinity主要实现以运行的Pod为参照,让新创建的Pod跟参照pod不在一个区域中的功能。
它的配置方式和选项跟PodAffinty是一样的,这里不再做详细解释,直接做一个测试案例。
1)继续使用上个案例中目标pod
[root@master k8sYamlForCSDN]# kubectl get pods -n dev --show-labels
NAME READY STATUS RESTARTS AGE LABELS
pod-podaffinity-target 1/1 Running 0 15m podenv=pro
2)创建pod-podantiaffinity-required.yaml,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-podantiaffinity-required namespace: dev spec: containers: - name: nginx image: nginx:1.17.1 affinity: #亲和性设置 podAntiAffinity: #设置pod亲和性 requiredDuringSchedulingIgnoredDuringExecution: - topologyKey: kubernetes.io/hostname labelSelector: matchExpressions: - key: podenv operator: In values: - pro
上面配置表达的意思是:新Pod必须要与拥有标签podenv=pro的pod不在同一Node上,运行测试一下
# 创建pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-podantiaffinity-required.yaml
pod/pod-podantiaffinity-required created
# 查看pod
# 发现调度到了node2上
[root@master k8sYamlForCSDN]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-podaffinity-target 1/1 Running 0 18m 10.244.1.15 node1 <none> <none>
pod-podantiaffinity-required 1/1 Running 0 30s 10.244.2.35 node2 <none> <none>
前面的调度方式都是站在Pod的角度上,通过在Pod上添加属性,来确定Pod是否要调度到指定的Node上,其实我们也可以站在Node的角度上,通过在Node上添加污点属性,来决定是否允许Pod调度过来。
Node被设置上污点之后就和Pod之间存在了一种相斥的关系,进而拒绝Pod调度进来,甚至可以将已经存在的Pod驱逐出去。
污点的格式为:key=value:effect
, key和value是污点的标签,effect描述污点的作用,支持如下三个选项:
使用kubeadm搭建的集群,默认就会给master节点添加一个污点标记,所以pod就不会调度到master节点上
使用kubectl设置和去除污点的命令示例如下:
# 设置污点
kubectl taint nodes node1 key=value:effect
# 去除污点
kubectl taint nodes node1 key:effect-
# 去除所有污点
kubectl taint nodes node1 key-
接下来,演示下污点的效果:
tag=heima:PreferNoSchedule
;然后创建pod1( pod1 可以 )tag=heima:NoSchedule
;然后创建pod2( pod1 正常 pod2 失败 )tag=heima:NoExecute
;然后创建pod3 ( 3个pod都失败 )# 为node1设置污点(PreferNoSchedule) [root@master k8sYamlForCSDN]# kubectl taint node node1 tag=set:PreferNoSchedule node/node1 tainted # 创建pod1 [root@master k8sYamlForCSDN]# kubectl run pod1 --image=nginx -n dev pod/pod1 created [root@master k8sYamlForCSDN]# kubectl get pod pod1 -n dev NAME READY STATUS RESTARTS AGE pod1 1/1 Running 0 12s # 为node1设置污点(取消PreferNoSchedule,设置NoSchedule) [root@master k8sYamlForCSDN]# kubectl taint node node1 tag=set:PreferNoSchedule- node/node1 untainted [root@master k8sYamlForCSDN]# kubectl taint node node1 tag=set:NoSchedule node/node1 tainted # 创建pod2 [root@master k8sYamlForCSDN]# kubectl run pod2 --image=nginx -n dev pod/pod2 created [root@master k8sYamlForCSDN]# kubectl get pods pod2 -n dev NAME READY STATUS RESTARTS AGE pod2 0/1 Pending 0 17s [root@master k8sYamlForCSDN]# kubectl describe pods pod2 -n dev Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 54s default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 1 node(s) had taint {node.kubernetes.io/unreachable: }, that the pod didn't tolerate, 1 node(s) had taint {tag: set}, that the pod didn't tolerate. # 查看node1上原来就有的pod,发现有2个pod正在运行 [root@master k8sYamlForCSDN]# kubectl get pods -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE pod-podaffinity-target 1/1 Running 0 49m 10.244.1.15 node1 pod1 1/1 Running 0 4m22s 10.244.1.17 node1 pod2 0/1 Pending 0 2m18s <none> <none> # 为node1设置污点(取消NoSchedule,设置NoExecute) [root@master k8sYamlForCSDN]# kubectl taint node node1 tag=set:NoSchedule- node/node1 untainted [root@master k8sYamlForCSDN]# kubectl taint node node1 tag=set:NoExecute node/node1 tainted # 创建pod3 [root@master k8sYamlForCSDN]# kubectl run pod3 --image=nginx -n dev pod/pod3 created # 发现之前的node1上面的pod被驱逐了,新创建的pod3也不能调度到node1上面 [root@master k8sYamlForCSDN]# kubectl get pods -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod3 0/1 Pending 0 84s <none> <none> <none> <none>
上面介绍了污点的作用,我们可以在node上添加污点用于拒绝pod调度上来,但是如果就是想将一个pod调度到一个有污点的node上去,这时候应该怎么做呢?这就要使用到容忍。
污点就是拒绝,容忍就是忽略,Node通过污点拒绝pod调度上去,Pod通过容忍忽略拒绝
下面先通过一个案例看下效果:
NoExecute
的污点,此时pod是调度不上去的创建pod-toleration.yaml,内容如下
apiVersion: v1
kind: Pod
metadata:
name: pod-toleration
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
tolerations: # 添加容忍
- key: "tag" # 要容忍的污点的key
operator: "Equal" # 操作符
value: "set" # 容忍的污点的value
effect: "NoExecute" # 添加容忍的规则,这里必须和标记的污点规则相同
# 添加容忍之前的pod
[root@master k8sYamlForCSDN]# kubectl run pod --image=nginx -n dev
pod/pod created
[root@master k8sYamlForCSDN]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod 0/1 Pending 0 5s <none> <none> <none> <none>
# 添加容忍之后的pod
[root@master k8sYamlForCSDN]# kubectl apply -f pod-toleration.yaml
pod/pod-toleration created
[root@master k8sYamlForCSDN]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod 0/1 Pending 0 62s <none> <none> <none> <none>
pod-toleration 1/1 Running 0 19s 10.244.1.19 node1 <none> <none>
下面看一下容忍的详细配置:
[root@master k8sYamlForCSDN]# kubectl explain pod.spec.tolerations
......
FIELDS:
key # 对应着要容忍的污点的键,空意味着匹配所有的键
value # 对应着要容忍的污点的值
operator # key-value的运算符,支持Equal和Exists(默认,对key操作,存在一个key,exists与value没有关系)
effect # 对应污点的effect,空意味着匹配所有影响
tolerationSeconds # 容忍时间, 当effect为NoExecute时生效,表示pod在Node上的停留时间
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。