赞
踩
这篇文章前先参考前博客
1.利用DICOM文件实现2D与3D体素坐标之间的转换
2.dicom世界观
dicom坐标系统
在DICOM标准的Image Plane属性中有两个关键字段:
yaw = 0.7854;
pitch = 0.1;
roll = 0;
dcm = angle2dcm( yaw, pitch, roll )
dcm =
0.7036 0.7036 -0.0998
-0.7071 0.7071 0
0.0706 0.0706 0.9950
#3d空间的点投影到2d平面 def TO2D(s,ImagePosition,ImageOrientationX,ImageOrientationY,PixelSpacing): # 3d空间交线的表达式 x, y, z = symbols('x, y, z') #check s list out of range if s: x1_3d = s[0][0] y1_3d = s[0][1] pos=[x1_3d,y1_3d,z] differ=pos - ImagePosition differ_x=np.dot(differ,ImageOrientationX) differ_y=np.dot(differ,ImageOrientationY) pos_2d=[differ_x/PixelSpacing[0],differ_y/PixelSpacing[1]] return pos_2d else: print("s is ERROR") #交线在2d平面的边界的交点 def get_2dpos(pos_2d,img_array): x, y, z = symbols('x, y, z') exp_x = solve([x - pos_2d[0], y - pos_2d[1]], [x, z])[x] x1 = solve([x - exp_x, y], [x, y])[x] # 取出y=0的时候的x值 x2 = solve([x - exp_x, y - img_array.shape[1]], [x, y])[x] # 取出y=192的时候的x值 return x1, x2 def res_img(img_array1,x1, x2,path=None,path_heat=None,PixelSpacing=None): #在原图像上画线 pos = [x1, x2] mri=cv2.normalize(np.array(img_array1), None, 0, 255, cv2.NORM_MINMAX) mri=np.uint8(np.array(mri)) # # cv2.imwrite(path, mri_1) cv2.line(mri, ( pos[0],0), (pos[1],img_array1.shape[1]), (255, 0, 0), lineType=cv2.LINE_AA) clahe = cv2.createCLAHE(tileGridSize=(1, 1)) mri = clahe.apply(mri) mri, PixelSpacing = resample_sapcing(mri, PixelSpacing) # resample+回归线 mri = get_square_crop(mri) # crop+resample+回归线 cv2.imwrite(path, mri) return def getIntersection(short,long,index=0,path=None): img_array1, ImagePosition1, PixelSpacing1, ImageOrientation1, SliceThickness1,normalvector1=short[0],short[1],short[2],short[3],short[4],short[5] img_array2, ImagePosition2, PixelSpacing2, ImageOrientation2, SliceThickness2,normalvector2=long[0],long[1],long[2],long[3],long[4],long[5] ImageOrientationX1 = ImageOrientation1[0:3] ImageOrientationY1 = ImageOrientation1[3:6] # 设置 并设置符号变量 sp.init_printing(use_unicode=True) InteractiveShell.ast_node_interactivity = 'all' x, y, z = symbols('x, y, z') #建立方程组(关键)根据Orientation确定平面的表达式,再利用解方程的思想确定交线的表达式 eq=[normalvector1[0] * (x - ImagePosition1[0]) + normalvector1[1] * (y - ImagePosition1[1]) + normalvector1[2] * (z - ImagePosition1[2]), normalvector2[0] * (x - ImagePosition2[0]) + normalvector2[1] * (y - ImagePosition2[1]) + normalvector2[2] * (z - ImagePosition2[2])] # 解方程 s = list(linsolve(eq, [x, y])) #2d空间交线的表达式(img1上) 2D点=(Difference_in_X /以X表示的像素大小,Differnce_in_Y /以Y表示的像素大小) pos_2d=TO2D(s,ImagePosition1,ImageOrientationX1,ImageOrientationY1,PixelSpacing1) x1_1, x1_2=get_2dpos(pos_2d,img_array1) # #在原图像上画线 path1 = path+str(index)+"_img.png" path3 = path+str(index)+ "_heatmap.png" res_img(img_array1, x1_1, x1_2,path1,path3,PixelSpacing1) return
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。