赞
踩
考虑向量函数
f
(
v
)
=
v
\bm{f}(\bm{v})=\bm{v}
f(v)=v,则
f
′
(
v
)
[
u
]
=
lim
h
→
0
f
(
v
+
h
u
)
−
f
(
v
)
h
=
u
=
I
⋅
u
=
u
⋅
I
\bm{f}'(\bm{v})[\bm{u}]=\lim_{h\rightarrow0}\dfrac{\bm{f}(\bm{v}+h\bm{u})-\bm{f}(\bm{v})}{h}=\bm{u}=\mathbf{I}\cdot\bm{u}=\bm{u}\cdot\mathbf{I}
f′(v)[u]=h→0limhf(v+hu)−f(v)=u=I⋅u=u⋅I故可将二阶单位张量视为:
d
v
d
v
L
=
d
v
d
v
R
=
I
=
g
k
⊗
g
k
=
g
k
⊗
g
k
{\dfrac{d\bm{v}}{d\bm{v}}}_{L}={\dfrac{d\bm{v}}{d\bm{v}}}_{R}=\mathbf{I}=\bm{g}^k\otimes\bm{g}_k=\bm{g}_k\otimes\bm{g}^k
dvdvL=dvdvR=I=gk⊗gk=gk⊗gk类比考虑四阶单位张量的定义,对二阶张量函数
F
(
A
)
=
A
\mathbf{F}(\mathbf{A})=\mathbf{A}
F(A)=A,则
F
′
(
A
)
[
B
]
=
lim
h
→
0
F
(
A
+
h
B
)
−
F
(
A
)
h
=
B
=
B
i
j
g
i
⊗
g
j
=
B
i
j
δ
k
i
δ
l
j
g
k
⊗
g
l
=
(
B
i
j
g
i
⊗
g
j
)
:
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
=
B
:
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
=
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
:
(
B
i
j
g
i
⊗
g
j
)
=
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
:
B
F′(A)[B]=limh→0F(A+hB)−F(A)h=B=Bij\bmgi⊗\bmgj=Bijδikδjl\bmgk⊗\bmgl=(Bij\bmgi⊗\bmgj):(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl)=B:(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl)=(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl):(Bij\bmgi⊗\bmgj)=(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl):B
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
m
g
l
n
g
k
p
g
l
q
g
m
⊗
g
n
⊗
g
p
⊗
g
q
=
δ
m
p
δ
n
q
g
m
⊗
g
n
⊗
g
p
⊗
g
q
=
g
m
⊗
g
n
⊗
g
m
⊗
g
n
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
m
g
k
n
g
m
⊗
g
l
⊗
g
n
⊗
g
l
=
δ
m
n
g
m
⊗
g
l
⊗
g
n
⊗
g
l
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
l
m
g
l
n
g
k
⊗
g
m
⊗
g
k
⊗
g
n
=
δ
m
n
g
k
⊗
g
m
⊗
g
k
⊗
g
n
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=gkmglngkpglq \bmgm⊗\bmgn⊗\bmgp⊗\bmgq=δpmδqn \bmgm⊗\bmgn⊗\bmgp⊗\bmgq=\bmgm⊗\bmgn⊗\bmgm⊗\bmgn=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=gkmgkn \bmgm⊗\bmgl⊗\bmgn⊗\bmgl=δnm \bmgm⊗\bmgl⊗\bmgn⊗\bmgl=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=glmgln \bmgk⊗\bmgm⊗\bmgk⊗\bmgn=δnm \bmgk⊗\bmgm⊗\bmgk⊗\bmgn=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl
I
≜
d
A
d
A
L
=
d
A
d
A
R
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
I≜dAdAL=dAdAR=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl
I
≠
I
⊗
I
=
g
k
⊗
g
k
⊗
g
l
⊗
g
l
=
⋯
I≠I⊗I=\bmgk⊗\bmgk⊗\bmgl⊗\bmgl=⋯
I
:
B
=
B
:
I
=
B
(
∀
B
∈
T
2
)
I:B=B:I=B(∀ B∈T2)
{
I
:
A
=
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
:
(
A
m
n
p
q
g
m
⊗
g
n
⊗
g
p
⊗
g
q
)
=
A
A
:
I
=
(
A
m
n
p
q
g
m
⊗
g
n
⊗
g
p
⊗
g
q
)
:
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
)
=
A
(
∀
A
∈
T
4
)
{I:A=(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl):(Amnpq\bmgm⊗\bmgn⊗\bmgp⊗\bmgq)=AA:I=(Amnpq\bmgm⊗\bmgn⊗\bmgp⊗\bmgq):(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl)=A(∀ A∈T4)
对四阶单位张量
I
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
\mathbb{I}=\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l
I=gk⊗gl⊗gk⊗gl 进行转置得到结果:
{
交换
1
−
4
或
2
−
3
指标:
I
⊗
I
=
g
l
⊗
g
l
⊗
g
k
⊗
g
k
=
g
k
⊗
g
k
⊗
g
l
⊗
g
l
交换
1
−
3
或
2
−
4
指标:
I
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
=
g
k
⊗
g
l
⊗
g
k
⊗
g
l
交换
1
−
2
或
3
−
4
指标:
g
l
⊗
g
k
⊗
g
k
⊗
g
l
=
g
k
⊗
g
l
⊗
g
l
⊗
g
k
{交换 1−4 或 2−3 指标:I⊗I=\bmgl⊗\bmgl⊗\bmgk⊗\bmgk=\bmgk⊗\bmgk⊗\bmgl⊗\bmgl交换 1−3 或 2−4 指标:I=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl=\bmgk⊗\bmgl⊗\bmgk⊗\bmgl交换 1−2 或 3−4 指标:\bmgl⊗\bmgk⊗\bmgk⊗\bmgl=\bmgk⊗\bmgl⊗\bmgl⊗\bmgk
I
T
=
g
l
⊗
g
k
⊗
g
k
⊗
g
l
=
g
l
⊗
g
k
⊗
g
k
⊗
g
l
=
g
l
⊗
g
k
⊗
g
k
⊗
g
l
=
g
l
⊗
g
k
⊗
g
k
⊗
g
l
IT=\bmgl⊗\bmgk⊗\bmgk⊗\bmgl=\bmgl⊗\bmgk⊗\bmgk⊗\bmgl=\bmgl⊗\bmgk⊗\bmgk⊗\bmgl=\bmgl⊗\bmgk⊗\bmgk⊗\bmgl
{
I
T
:
B
=
(
g
l
⊗
g
k
⊗
g
k
⊗
g
l
)
:
(
B
m
n
g
m
⊗
g
n
)
=
B
m
n
g
n
⊗
g
m
=
B
T
B
:
I
T
=
(
B
m
n
g
m
⊗
g
n
)
:
(
g
l
⊗
g
k
⊗
g
k
⊗
g
l
)
=
B
m
n
g
n
⊗
g
m
=
B
T
{IT:B=(\bmgl⊗\bmgk⊗\bmgk⊗\bmgl):(Bmn\bmgm⊗\bmgn)=Bmn\bmgn⊗\bmgm=BTB:IT=(Bmn\bmgm⊗\bmgn):(\bmgl⊗\bmgk⊗\bmgk⊗\bmgl)=Bmn\bmgn⊗\bmgm=BT
{
I
T
:
A
=
A
i
j
k
l
(
I
T
:
g
i
⊗
g
j
)
⊗
g
k
⊗
g
l
=
A
i
j
k
l
g
j
⊗
g
i
⊗
g
k
⊗
g
l
A
:
I
T
=
A
i
j
k
l
g
i
⊗
g
j
(
⊗
g
k
⊗
g
l
:
I
T
)
=
A
i
j
k
l
g
i
⊗
g
j
⊗
g
l
⊗
g
k
{IT:A=Aijkl(IT:\bmgi⊗\bmgj)⊗\bmgk⊗\bmgl=Aijkl\bmgj⊗\bmgi⊗\bmgk⊗\bmglA:IT=Aijkl\bmgi⊗\bmgj(⊗\bmgk⊗\bmgl:IT)=Aijkl\bmgi⊗\bmgj⊗\bmgl⊗\bmgk
I
T
:
I
T
=
I
\mathbb{I}^T:\mathbb{I}^T=\mathbb{I}
IT:IT=I
对于彷射量
A
\bm{A}
A,易证得:
d
A
T
d
A
=
I
T
\dfrac{d\bm{A^T}}{d\bm A}=\mathbb{I}^T
dAdAT=IT
将四阶单位张量关于
1
−
2
1-2
1−2指标对称化,则可得到对称的四阶单位张量:
I
4
s
≜
1
2
(
I
+
I
T
)
=
1
2
(
g
k
⊗
g
l
⊗
g
k
⊗
g
l
+
g
l
⊗
g
k
⊗
g
k
⊗
g
l
)
=
1
2
(
δ
k
i
δ
l
j
+
δ
k
j
δ
l
i
)
g
i
⊗
g
j
⊗
g
k
⊗
g
l
4sI≜12(I+IT)=12(\bmgk⊗\bmgl⊗\bmgk⊗\bmgl+\bmgl⊗\bmgk⊗\bmgk⊗\bmgl)=12(δikδjl+δjkδil)\bmgi⊗\bmgj⊗\bmgk⊗\bmgl
I
4
s
i
j
k
l
=
I
4
s
k
l
i
j
,
I
4
s
i
j
k
l
=
I
4
s
j
i
k
l
=
I
4
s
i
j
l
k
4sIijkl=4sIklij,4sIijkl=4sIjikl=4sIijlk
I
4
s
:
I
4
s
=
I
4
s
\stackrel{4s}{\mathbb I}:\stackrel{4s}{\mathbb I}=\stackrel{4s}{\mathbb I}
I4s:I4s=I4s
对于彷射量
A
\bm{A}
A,易证得:
d
s
y
m
(
A
)
d
A
=
I
4
s
\dfrac{d~sym(\bm{A})}{d\bm A}=\stackrel{4s}{\mathbb I}
dAd sym(A)=I4s
通常,对任意对称仿射量
B
\mathbf{B}
B ,我们会对它进行如下分解:
B
=
1
3
t
r
(
B
)
I
+
d
e
v
B
=
1
3
B
:
(
I
⊗
I
)
+
d
e
v
B
⟹
d
e
v
B
=
B
:
(
I
4
s
−
1
3
(
I
⊗
I
)
)
=
(
I
4
s
−
1
3
(
I
⊗
I
)
)
:
B
B=13tr(B)I+dev B=13B:(I⊗I)+dev B ⟹ dev B=B:(4sI−13(I⊗I))=(4sI−13(I⊗I)):B
{
d
e
v
B
=
I
s
:
B
=
B
:
I
s
B
−
d
e
v
B
=
I
m
:
B
=
B
:
I
m
{dev B=Is:B=B:IsB−dev B=Im:B=B:Im
此外,
I
m
{\mathbb I}_m
Im 与四阶投影张量
I
s
{\mathbb I}_s
Is 间还满足:
{
I
m
:
I
m
=
1
9
I
⊗
I
:
I
⊗
I
=
1
9
(
t
r
I
)
I
⊗
I
=
I
m
I
s
:
I
s
=
(
I
4
s
−
I
m
)
:
(
I
4
s
−
I
m
)
=
I
s
I
m
:
I
s
=
I
s
:
I
m
=
0
{Im:Im=19\boldI⊗\boldI:\boldI⊗\boldI=19(tr \boldI)\boldI⊗\boldI=ImIs:Is=(4sI−Im):(4sI−Im)=IsIm:Is=Is:Im=0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。