当前位置:   article > 正文

(二十三)特殊的四阶张量 ——四阶单位张量

四阶张量

1. 四阶单位张量

考虑向量函数 f ( v ) = v \bm{f}(\bm{v})=\bm{v} f(v)=v,则
f ′ ( v ) [ u ] = lim ⁡ h → 0 f ( v + h u ) − f ( v ) h = u = I ⋅ u = u ⋅ I \bm{f}'(\bm{v})[\bm{u}]=\lim_{h\rightarrow0}\dfrac{\bm{f}(\bm{v}+h\bm{u})-\bm{f}(\bm{v})}{h}=\bm{u}=\mathbf{I}\cdot\bm{u}=\bm{u}\cdot\mathbf{I} f(v)[u]=h0limhf(v+hu)f(v)=u=Iu=uI故可将二阶单位张量视为:
d v d v L = d v d v R = I = g k ⊗ g k = g k ⊗ g k {\dfrac{d\bm{v}}{d\bm{v}}}_{L}={\dfrac{d\bm{v}}{d\bm{v}}}_{R}=\mathbf{I}=\bm{g}^k\otimes\bm{g}_k=\bm{g}_k\otimes\bm{g}^k dvdvL=dvdvR=I=gkgk=gkgk类比考虑四阶单位张量的定义,对二阶张量函数 F ( A ) = A \mathbf{F}(\mathbf{A})=\mathbf{A} F(A)=A,则
F ′ ( A ) [ B ] = lim ⁡ h → 0 F ( A + h B ) − F ( A ) h = B = B i j g i ⊗ g j = B i j δ k i δ l j g k ⊗ g l = ( B i j g i ⊗ g j ) : ( g k ⊗ g l ⊗ g k ⊗ g l ) = B : ( g k ⊗ g l ⊗ g k ⊗ g l ) = ( g k ⊗ g l ⊗ g k ⊗ g l ) : ( B i j g i ⊗ g j ) = ( g k ⊗ g l ⊗ g k ⊗ g l ) : B F(A)[B]=limh0F(A+hB)F(A)h=B=Bij\bmgi\bmgj=Bijδikδjl\bmgk\bmgl=(Bij\bmgi\bmgj):(\bmgk\bmgl\bmgk\bmgl)=B:(\bmgk\bmgl\bmgk\bmgl)=(\bmgk\bmgl\bmgk\bmgl):(Bij\bmgi\bmgj)=(\bmgk\bmgl\bmgk\bmgl):B

F(A)[B]=limh0F(A+hB)F(A)h=B=Bij\bmgi\bmgj=Bijδikδjl\bmgk\bmgl=(Bij\bmgi\bmgj):(\bmgk\bmgl\bmgk\bmgl)=B:(\bmgk\bmgl\bmgk\bmgl)=(\bmgk\bmgl\bmgk\bmgl):(Bij\bmgi\bmgj)=(\bmgk\bmgl\bmgk\bmgl):B
F(A)[B]=h0limhF(A+hB)F(A)=B=Bijgigj=Bijδkiδljgkgl=(Bijgigj):(gkglgkgl)=B:(gkglgkgl)=(gkglgkgl):(Bijgigj)=(gkglgkgl):B
g k ⊗ g l ⊗ g k ⊗ g l = g k m g l n g k p g l q   g m ⊗ g n ⊗ g p ⊗ g q = δ m p δ n q   g m ⊗ g n ⊗ g p ⊗ g q = g m ⊗ g n ⊗ g m ⊗ g n = g k ⊗ g l ⊗ g k ⊗ g l g k ⊗ g l ⊗ g k ⊗ g l = g k m g k n   g m ⊗ g l ⊗ g n ⊗ g l = δ m n   g m ⊗ g l ⊗ g n ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l g k ⊗ g l ⊗ g k ⊗ g l = g l m g l n   g k ⊗ g m ⊗ g k ⊗ g n = δ m n   g k ⊗ g m ⊗ g k ⊗ g n = g k ⊗ g l ⊗ g k ⊗ g l \bmgk\bmgl\bmgk\bmgl=gkmglngkpglq \bmgm\bmgn\bmgp\bmgq=δpmδqn \bmgm\bmgn\bmgp\bmgq=\bmgm\bmgn\bmgm\bmgn=\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl=gkmgkn \bmgm\bmgl\bmgn\bmgl=δnm \bmgm\bmgl\bmgn\bmgl=\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl=glmgln \bmgk\bmgm\bmgk\bmgn=δnm \bmgk\bmgm\bmgk\bmgn=\bmgk\bmgl\bmgk\bmgl
\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl\bmgk\bmgl=gkmglngkpglq \bmgm\bmgn\bmgp\bmgq=δpmδqn \bmgm\bmgn\bmgp\bmgq=\bmgm\bmgn\bmgm\bmgn=\bmgk\bmgl\bmgk\bmgl=gkmgkn \bmgm\bmgl\bmgn\bmgl=δnm \bmgm\bmgl\bmgn\bmgl=\bmgk\bmgl\bmgk\bmgl=glmgln \bmgk\bmgm\bmgk\bmgn=δnm \bmgk\bmgm\bmgk\bmgn=\bmgk\bmgl\bmgk\bmgl
gkglgkglgkglgkglgkglgkgl=gkmglngkpglq gmgngpgq=δmpδnq gmgngpgq=gmgngmgn=gkglgkgl=gkmgkn gmglgngl=δmn gmglgngl=gkglgkgl=glmgln gkgmgkgn=δmn gkgmgkgn=gkglgkgl
故定义四阶单位张量( 1 − 3 , 2 − 4 1-3,2-4 13,24 指标为哑指标)
I ≜ d A d A L = d A d A R = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l IdAdAL=dAdAR=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl
IdAdAL=dAdAR=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl
IdAdAL=dAdAR=gkglgkgl=gkglgkgl=gkglgkgl=gkglgkgl
显然,四阶单位张量不等于度量张量的并矢( 1 − 2 , 3 − 4 1-2,3-4 12,34 指标为哑指标),即
I ≠ I ⊗ I = g k ⊗ g k ⊗ g l ⊗ g l = ⋯ III=\bmgk\bmgk\bmgl\bmgl=
III=\bmgk\bmgk\bmgl\bmgl=
I=II=gkgkglgl=
从四阶张量的引出过程可知四阶单位张量与任意仿射量间满足:
I : B = B : I = B ( ∀   B ∈ T 2 ) I:B=B:I=B( BT2)
I:B=B:I=B( BT2)
I:B=B:I=B( BT2)
四阶单位张量与其它四阶张量间满足:
{ I : A = ( g k ⊗ g l ⊗ g k ⊗ g l ) : ( A m n p q g m ⊗ g n ⊗ g p ⊗ g q ) = A A : I = ( A m n p q g m ⊗ g n ⊗ g p ⊗ g q ) : ( g k ⊗ g l ⊗ g k ⊗ g l ) = A ( ∀   A ∈ T 4 ) {I:A=(\bmgk\bmgl\bmgk\bmgl):(Amnpq\bmgm\bmgn\bmgp\bmgq)=AA:I=(Amnpq\bmgm\bmgn\bmgp\bmgq):(\bmgk\bmgl\bmgk\bmgl)=A( AT4)
I:A=(\bmgk\bmgl\bmgk\bmgl):(Amnpq\bmgm\bmgn\bmgp\bmgq)=AA:I=(Amnpq\bmgm\bmgn\bmgp\bmgq):(\bmgk\bmgl\bmgk\bmgl)=A( AT4)
I:A=(gkglgkgl):(Amnpqgmgngpgq)=AA:I=(Amnpqgmgngpgq):(gkglgkgl)=A( AT4)

2. 由四阶单位张量导出的其它特殊的四阶张量

2.1 四阶单位张量的转置

对四阶单位张量 I = g k ⊗ g l ⊗ g k ⊗ g l \mathbb{I}=\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l I=gkglgkgl 进行转置得到结果:
{ 交换  1 − 4  或  2 − 3  指标: I ⊗ I = g l ⊗ g l ⊗ g k ⊗ g k = g k ⊗ g k ⊗ g l ⊗ g l 交换  1 − 3  或  2 − 4  指标: I = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l 交换  1 − 2  或  3 − 4  指标: g l ⊗ g k ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g l ⊗ g k {交换 14 或 23 指标:II=\bmgl\bmgl\bmgk\bmgk=\bmgk\bmgk\bmgl\bmgl交换 13 或 24 指标:I=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl交换 12 或 34 指标:\bmgl\bmgk\bmgk\bmgl=\bmgk\bmgl\bmgl\bmgk

 14  23  13  24  12  34 II=\bmgl\bmgl\bmgk\bmgk=\bmgk\bmgk\bmgl\bmglI=\bmgk\bmgl\bmgk\bmgl=\bmgk\bmgl\bmgk\bmgl\bmgl\bmgk\bmgk\bmgl=\bmgk\bmgl\bmgl\bmgk
交换 1 2指标:交换 1 2指标:交换 1 3指标:II=glglgkgk=gkgkglglI=gkglgkgl=gkglgkglglgkgkgl=gkglglgk将上述结果中除 I ⊗ I \mathbf{I}\otimes\mathbf{I} II I \mathbb{I} I 外的结果称作四阶单位张量的转置( 1 − 4 , 2 − 3 1-4,2-3 14,23 指标为哑指标),记为
I T = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l IT=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl
IT=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl=\bmgl\bmgk\bmgk\bmgl
IT=glgkgkgl=glgkgkgl=glgkgkgl=glgkgkgl
上述定义意味着:未特别声明时,四阶单位张量的转置是针对 1 − 2 1-2 12指标进行。 注意到,四阶单位张量的转置满足如下性质:
{ I T : B = ( g l ⊗ g k ⊗ g k ⊗ g l ) : ( B m n g m ⊗ g n ) = B m n g n ⊗ g m = B T B : I T = ( B m n g m ⊗ g n ) : ( g l ⊗ g k ⊗ g k ⊗ g l ) = B m n g n ⊗ g m = B T {IT:B=(\bmgl\bmgk\bmgk\bmgl):(Bmn\bmgm\bmgn)=Bmn\bmgn\bmgm=BTB:IT=(Bmn\bmgm\bmgn):(\bmgl\bmgk\bmgk\bmgl)=Bmn\bmgn\bmgm=BT
IT:B=(\bmgl\bmgk\bmgk\bmgl):(Bmn\bmgm\bmgn)=Bmn\bmgn\bmgm=BTB:IT=(Bmn\bmgm\bmgn):(\bmgl\bmgk\bmgk\bmgl)=Bmn\bmgn\bmgm=BT
IT:B=(glgkgkgl):(Bmngmgn)=Bmngngm=BTB:IT=(Bmngmgn):(glgkgkgl)=Bmngngm=BT
易知: I T \mathbb{I}^T IT与任意四阶张量双点积的结果等于四阶张量对参与双点积的指标进行转置,因为
{ I T : A = A i j k l ( I T : g i ⊗ g j ) ⊗ g k ⊗ g l = A i j k l g j ⊗ g i ⊗ g k ⊗ g l A : I T = A i j k l g i ⊗ g j ( ⊗ g k ⊗ g l : I T ) = A i j k l g i ⊗ g j ⊗ g l ⊗ g k {IT:A=Aijkl(IT:\bmgi\bmgj)\bmgk\bmgl=Aijkl\bmgj\bmgi\bmgk\bmglA:IT=Aijkl\bmgi\bmgj(\bmgk\bmgl:IT)=Aijkl\bmgi\bmgj\bmgl\bmgk
IT:A=Aijkl(IT:\bmgi\bmgj)\bmgk\bmgl=Aijkl\bmgj\bmgi\bmgk\bmglA:IT=Aijkl\bmgi\bmgj(\bmgk\bmgl:IT)=Aijkl\bmgi\bmgj\bmgl\bmgk
IT:A=Aijkl(IT:gigj)gkgl=AijklgjgigkglA:IT=Aijklgigj(gkgl:IT)=Aijklgigjglgk

I T : I T = I \mathbb{I}^T:\mathbb{I}^T=\mathbb{I} IT:IT=I
对于彷射量 A \bm{A} A,易证得:
d A T d A = I T \dfrac{d\bm{A^T}}{d\bm A}=\mathbb{I}^T dAdAT=IT

2.2 对称的四阶单位张量

将四阶单位张量关于 1 − 2 1-2 12指标对称化,则可得到对称的四阶单位张量
I 4 s ≜ 1 2 ( I + I T ) = 1 2 ( g k ⊗ g l ⊗ g k ⊗ g l + g l ⊗ g k ⊗ g k ⊗ g l ) = 1 2 ( δ k i δ l j + δ k j δ l i ) g i ⊗ g j ⊗ g k ⊗ g l 4sI12(I+IT)=12(\bmgk\bmgl\bmgk\bmgl+\bmgl\bmgk\bmgk\bmgl)=12(δikδjl+δjkδil)\bmgi\bmgj\bmgk\bmgl

I4s12(I+IT)=12(\bmgk\bmgl\bmgk\bmgl+\bmgl\bmgk\bmgk\bmgl)=12(δikδjl+δjkδil)\bmgi\bmgj\bmgk\bmgl
I4s21(I+IT)=21(gkglgkgl+glgkgkgl)=21(δkiδlj+δkjδli)gigjgkgl显然,对称的四阶单位张量满足 Vogit 对称性:
I 4 s i j k l = I 4 s k l i j , I 4 s i j k l = I 4 s j i k l = I 4 s i j l k 4sIijkl=4sIklij,4sIijkl=4sIjikl=4sIijlk
I4sijkl=I4sklij,I4sijkl=I4sjikl=I4sijlk
I4sijkl=I4sklij,I4sijkl=I4sjikl=I4sijlk
易知: I 4 s \stackrel{4s}{\mathbb I} I4s与任意四阶张量双点积的结果等于四阶张量对参与双点积的指标进行对称化。则
I 4 s : I 4 s = I 4 s \stackrel{4s}{\mathbb I}:\stackrel{4s}{\mathbb I}=\stackrel{4s}{\mathbb I} I4s:I4s=I4s
对于彷射量 A \bm{A} A,易证得:
d   s y m ( A ) d A = I 4 s \dfrac{d~sym(\bm{A})}{d\bm A}=\stackrel{4s}{\mathbb I} dAd sym(A)=I4s

2.3 四阶投影张量

通常,对任意对称仿射量 B \mathbf{B} B ,我们会对它进行如下分解:
B = 1 3 t r ( B ) I + d e v   B = 1 3 B : ( I ⊗ I ) + d e v   B   ⟹   d e v   B = B : ( I 4 s − 1 3 ( I ⊗ I ) ) = ( I 4 s − 1 3 ( I ⊗ I ) ) : B B=13tr(B)I+dev B=13B:(II)+dev B  dev B=B:(4sI13(II))=(4sI13(II)):B

  B=13tr(B)I+dev B=13B:(II)+dev Bdev B=B:(I4s13(II))=(I4s13(II)):B
  B=31tr(B)I+dev B=31B:(II)+dev Bdev B=B:(I4s31(II))=(I4s31(II)):B { I m ≜ 1 3 I ⊗ I I s ≜ I 4 s − I m   ⟹   I 4 s : I m = I m : I 4 s = I m {Im13\boldI\boldIIs4sIIm  4sI:Im=Im:4sI=Im
Im31IIIsI4sIm  I4s:Im=Im:I4s=Im
对称仿射量的偏量部分与球量部分可分别表示为
{ d e v   B = I s : B = B : I s B − d e v   B = I m : B = B : I m {dev B=Is:B=B:IsBdev B=Im:B=B:Im
dev B=Is:B=B:IsBdev B=Im:B=B:Im

此外, I m {\mathbb I}_m Im 与四阶投影张量 I s {\mathbb I}_s Is 间还满足:
{ I m : I m = 1 9 I ⊗ I : I ⊗ I = 1 9 ( t r   I ) I ⊗ I = I m I s : I s = ( I 4 s − I m ) : ( I 4 s − I m ) = I s I m : I s = I s : I m = 0 {Im:Im=19\boldI\boldI:\boldI\boldI=19(tr \boldI)\boldI\boldI=ImIs:Is=(4sIIm):(4sIIm)=IsIm:Is=Is:Im=0
Im:Im=91II:II=91(tr I)II=ImIs:Is=(I4sIm):(I4sIm)=IsIm:Is=Is:Im=0

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/176279
推荐阅读
相关标签
  

闽ICP备14008679号