赞
踩
目录
- function rc_new = bound2four(rc)
- %BOUND2FOUR Convert 8-connected boundary to 4-connected boundary.
- % RC_NEW = BOUND2FOUR(RC) converts an eight-connected boundary to a
- % four-connected boundary. RC is a P-by-2 matrix, each row of
- % which contains the row and column coordinates of a boundary
- % pixel. BOUND2FOUR inserts new boundary pixels wherever there is
- % a diagonal connection.
-
- % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
- % Digital Image Processing Using MATLAB, Prentice-Hall, 2004
- % $Revision: 1.4 $ $Date: 2003/11/21 14:20:21 $
-
- if size(rc, 1) > 1
- % Phase 1: remove diagonal turns, one at a time until they are all gone.
- done = 0;
- rc1 = [rc(end - 1, :); rc];
- while ~done
- d = diff(rc1, 1);
- diagonal_locations = all(d, 2);
- double_diagonals = diagonal_locations(1:end - 1) & ...
- (diff(diagonal_locations, 1) == 0);
- double_diagonal_idx = find(double_diagonals);
- turns = any(d(double_diagonal_idx, :) ~= ...
- d(double_diagonal_idx + 1, :), 2);
- turns_idx = double_diagonal_idx(turns);
- if isempty(turns_idx)
- done = 1;
- else
- first_turn = turns_idx(1);
- rc1(first_turn + 1, :) = (rc1(first_turn, :) + ...
- rc1(first_turn + 2, :)) / 2;
- if first_turn == 1
- rc1(end, :) = rc1(2, :);
- end
- end
- end
- rc1 = rc1(2:end, :);
- end
-
- % Phase 2: insert extra pixels where there are diagonal connections.
-
- rowdiff = diff(rc1(:, 1));
- coldiff = diff(rc1(:, 2));
-
- diagonal_locations = rowdiff & coldiff;
- num_old_pixels = size(rc1, 1);
- num_new_pixels = num_old_pixels + sum(diagonal_locations);
- rc_new = zeros(num_new_pixels, 2);
-
- % Insert the original values into the proper locations in the new RC
- % matrix.
- idx = (1:num_old_pixels)' + [0; cumsum(diagonal_locations)];
- rc_new(idx, :) = rc1;
-
- % Compute the new pixels to be inserted.
- new_pixel_offsets = [0 1; -1 0; 1 0; 0 -1];
- offset_codes = 2 * (1 - (coldiff(diagonal_locations) + 1)/2) + ...
- (2 - (rowdiff(diagonal_locations) + 1)/2);
- new_pixels = rc1(diagonal_locations, :) + ...
- new_pixel_offsets(offset_codes, :);
-
- % Where do the new pixels go?
- insertion_locations = zeros(num_new_pixels, 1);
- insertion_locations(idx) = 1;
- insertion_locations = ~insertion_locations;
-
- % Insert the new pixels.
- rc_new(insertion_locations, :) = new_pixels;
这段代码的目的是将一个8连通边界转换为4连通边界。在数字图像处理中,连通性是衡量像素之间关系的一种方式。8连通边界意味着边界上的每个像素与其周围的8个像素(水平、垂直和对角线方向)都可能相连。而4连通边界则仅考虑水平和垂直方向的相邻像素。该转换过程涉及两个阶段:首先是移除所有对角线转折点,然后是在需要的位置插入额外的像素以确保4连通性。
以下是对代码的详细分析:
初始化:复制输入的边界坐标rc
到rc1
并在rc1
的开头添加rc
的倒数第二行。这样做是为了处理循环边界条件。
循环处理:通过计算rc1
的差分d
,找出所有对角线连接的位置。这里,对角线连接是指在两个方向(行和列)上都有变化的连接。
双重对角线和转折点检测:接下来,识别连续的对角线连接(双重对角线)并找出其中的转折点。转折点是指相邻的对角线连接在方向上有所不同的地方。
处理转折点:对于每个找到的转折点,通过在转折点位置插入一个新的像素(这个像素的坐标是转折点前后两个像素坐标的平均值)来移除转折。如果处理的是第一个转折点,还需要更新rc1
的最后一行,以保持边界的闭合性。
循环结束条件:当没有更多转折点可以处理时,结束循环。
计算差分:计算rc1
中行和列的差分,以找出对角线连接的位置。
确定新像素数量和位置:根据对角线连接的数量,计算新的边界坐标矩阵rc_new
的大小,并初始化为零矩阵。然后,计算原始像素和新插入像素在rc_new
中的正确位置。
计算新像素坐标:对于每个需要插入的新像素,根据其相对于原始对角线连接的位置,计算新像素的坐标。
插入操作:在rc_new
中填充原始像素和新计算的像素,完成4连通边界的构建。
- function B = bound2im(b, M, N, x0, y0)
- %BOUND2IM Converts a boundary to an image.
- % B = BOUND2IM(b) converts b, an np-by-2 or 2-by-np array
- % representing the integer coordinates of a boundary, into a binary
- % image with 1s in the locations defined by the coordinates in b
- % and 0s elsewhere.
- %
- % B = BOUND2IM(b, M, N) places the boundary approximately centered
- % in an M-by-N image. If any part of the boundary is outside the
- % M-by-N rectangle, an error is issued.
- %
- % B = BOUND2IM(b, M, N, X0, Y0) places the boundary in an image of
- % size M-by-N, with the topmost boundary point located at X0 and
- % the leftmost point located at Y0. If the shifted boundary is
- % outside the M-by-N rectangle, an error is issued. XO and X0 must
- % be positive integers.
-
- % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
- % Digital Image Processing Using MATLAB, Prentice-Hall, 2004
- % $Revision: 1.6 $ $Date: 2003/06/14 16:21:28 $
-
- [np, nc] = size(b);
- if np < nc
- b = b'; % To convert to size np-by-2.
- [np, nc] = size(b);
- end
-
- % Make sure the coordinates are integers.
- x = round(b(:, 1));
- y = round(b(:, 2));
-
- % Set up the default size parameters.
- x = x - min(x) + 1;
- y = y - min(y) + 1;
- B = false(max(x), max(y));
- C = max(x) - min(x) + 1;
- D = max(y) - min(y) + 1;
-
- if nargin == 1
- % Use the preceding default values.
- elseif nargin == 3
- if C > M | D > N
- error('The boundary is outside the M-by-N region.')
- end
- % The image size will be M-by-N. Set up the parameters for this.
- B = false(M, N);
- % Distribute extra rows approx. even between top and bottom.
- NR = round((M - C)/2);
- NC = round((N - D)/2); % The same for columns.
- x = x + NR; % Offset the boundary to new position.
- y = y + NC;
- elseif nargin == 5
- if x0 < 0 | y0 < 0
- error('x0 and y0 must be positive integers.')
- end
- x = x + round(x0) - 1;
- y = y + round(y0) - 1;
- C = C + x0 - 1;
- D = D + y0 - 1;
- if C > M | D > N
- error('The shifted boundary is outside the M-by-N region.')
- end
- B = false(M, N);
- else
- error('Incorrect number of inputs.')
- end
-
- B(sub2ind(size(B), x, y)) = true;
这段代码定义了一个名为 bound2im
的函数,它的主要作用是将一个边界(由一系列坐标点组成)转换成一个二进制图像。在这个二进制图像中,边界上的点被标记为 1,其他位置则为 0。
以下是对代码的详细分析:
function B = bound2im(b, M, N, x0, y0)
这表示 bound2im
是一个函数,它可以接收从1到5个参数:
b
:一个 np-by-2 或 2-by-np 的数组,代表边界的整数坐标。M
和 N
(可选):指定输出图像的大小(行数和列数)。x0
和 y0
(可选):指定边界在图像中的起始位置。函数返回一个二进制图像 B
。
首先,函数检查输入边界 b
的尺寸,并确保其为 np-by-2 的格式。如果不是,就将其转置。这样做是为了确保后续操作中坐标的使用是正确的。
接着,函数通过取整操作确保坐标都是整数值,因为图像中的位置索引必须是整数。
如果没有指定图像的大小(即只传入了 b
参数),函数会根据边界的最小和最大坐标计算出一个默认的图像大小。这样做的目的是让整个边界都能够被包含在生成的图像中。
b
,那么函数会创建一个足够大的图像来容纳整个边界,并将边界放在图像的左上角。M
和 N
,但没有指定边界的起始位置,那么边界会被置于图像的大致中心位置。此时,如果边界超出了指定的图像大小,函数会报错。x0
和 y0
,边界会根据这些位置进行偏移。同样,如果偏移后的边界超出了图像大小,函数也会报错。最后,函数使用 false
初始化一个大小为 M-by-N 的二进制图像矩阵 B
,然后根据调整后的边界坐标,在相应的位置将 B
中的值设置为 true
,从而生成最终的边界图像。
nargin
(传入的参数数量)不符合要求,函数会报告“Incorrect number of inputs”错误。x0
、y0
不是正整数,函数同样会报错。- function B = boundaries(BW, conn, dir)
- %BOUNDARIES Trace object boundaries.
- % B = BOUNDARIES(BW) traces the exterior boundaries of objects in
- % the binary image BW. B is a P-by-1 cell array, where P is the
- % number of objects in the image. Each cell contains a Q-by-2
- % matrix, each row of which contains the row and column coordinates
- % of a boundary pixel. Q is the number of boundary pixels for the
- % corresponding object. Object boundaries are traced in the
- % clockwise direction.
- %
- % B = BOUNDARIES(BW, CONN) specifies the connectivity to use when
- % tracing boundaries. CONN may be either 8 or 4. The default
- % value for CONN is 8.
- %
- % B = BOUNDARIES(BW, CONN, DIR) specifies the direction used for
- % tracing boundaries. DIR should be either 'cw' (trace boundaries
- % clockwise) or 'ccw' (trace boundaries counterclockwise). If DIR
- % is omitted BOUNDARIES traces in the clockwise direction.
-
- % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
- % Digital Image Processing Using MATLAB, Prentice-Hall, 2004
- % $Revision: 1.6 $ $Date: 2003/11/21 14:22:07 $
-
- if nargin < 3
- dir = 'cw';
- end
-
- if nargin < 2
- conn = 8;
- end
-
- L = bwlabel(BW, conn);
-
- % The number of objects is the maximum value of L. Initialize the
- % cell array B so that each cell initially contains a 0-by-2 matrix.
- numObjects = max(L(:));
- if numObjects > 0
- B = {zeros(0, 2)};
- B = repmat(B, numObjects, 1);
- else
- B = {};
- end
-
- % Pad label matrix with zeros. This lets us write the
- % boundary-following loop without worrying about going off the edge
- % of the image.
- Lp = padarray(L, [1 1], 0, 'both');
-
- % Compute the linear indexing offsets to take us from a pixel to its
- % neighbors.
- M = size(Lp, 1);
- if conn == 8
- % Order is N NE E SE S SW W NW.
- offsets = [-1, M - 1, M, M + 1, 1, -M + 1, -M, -M-1];
- else
- % Order is N E S W.
- offsets = [-1, M, 1, -M];
- end
-
- % next_search_direction_lut is a lookup table. Given the direction
- % from pixel k to pixel k+1, what is the direction to start with when
- % examining the neighborhood of pixel k+1?
- if conn == 8
- next_search_direction_lut = [8 8 2 2 4 4 6 6];
- else
- next_search_direction_lut = [4 1 2 3];
- end
-
- % next_direction_lut is a lookup table. Given that we just looked at
- % neighbor in a given direction, which neighbor do we look at next?
- if conn == 8
- next_direction_lut = [2 3 4 5 6 7 8 1];
- else
- next_direction_lut = [2 3 4 1];
- end
-
- % Values used for marking the starting and boundary pixels.
- START = -1;
- BOUNDARY = -2;
-
- % Initialize scratch space in which to record the boundary pixels as
- % well as follow the boundary.
- scratch = zeros(100, 1);
-
- % Find candidate starting locations for boundaries.
- [rr, cc] = find((Lp(2:end-1, :) > 0) & (Lp(1:end-2, :) == 0));
- rr = rr + 1;
-
- for k = 1:length(rr)
- r = rr(k);
- c = cc(k);
- if (Lp(r,c) > 0) & (Lp(r - 1, c) == 0) & isempty(B{Lp(r, c)})
- % We've found the start of the next boundary. Compute its
- % linear offset, record which boundary it is, mark it, and
- % initialize the counter for the number of boundary pixels.
- idx = (c-1)*size(Lp, 1) + r;
- which = Lp(idx);
-
- scratch(1) = idx;
- Lp(idx) = START;
- numPixels = 1;
- currentPixel = idx;
- initial_departure_direction = [];
-
- done = 0;
- next_search_direction = 2;
- while ~done
- % Find the next boundary pixel.
- direction = next_search_direction;
- found_next_pixel = 0;
- for k = 1:length(offsets)
- neighbor = currentPixel + offsets(direction);
- if Lp(neighbor) ~= 0
- % Found the next boundary pixel.
-
- if (Lp(currentPixel) == START) & ...
- isempty(initial_departure_direction)
- % We are making the initial departure from
- % the starting pixel.
- initial_departure_direction = direction;
-
- elseif (Lp(currentPixel) == START) & ...
- (initial_departure_direction == direction)
- % We are about to retrace our path.
- % That means we're done.
- done = 1;
- found_next_pixel = 1;
- break;
- end
-
- % Take the next step along the boundary.
- next_search_direction = ...
- next_search_direction_lut(direction);
- found_next_pixel = 1;
- numPixels = numPixels + 1;
- if numPixels > size(scratch, 1)
- % Double the scratch space.
- scratch(2*size(scratch, 1)) = 0;
- end
- scratch(numPixels) = neighbor;
-
- if Lp(neighbor) ~= START
- Lp(neighbor) = BOUNDARY;
- end
-
- currentPixel = neighbor;
- break;
- end
-
- direction = next_direction_lut(direction);
- end
-
- if ~found_next_pixel
- % If there is no next neighbor, the object must just
- % have a single pixel.
- numPixels = 2;
- scratch(2) = scratch(1);
- done = 1;
- end
- end
-
- % Convert linear indices to row-column coordinates and save
- % in the output cell array.
- [row, col] = ind2sub(size(Lp), scratch(1:numPixels));
- B{which} = [row - 1, col - 1];
- end
- end
-
- if strcmp(dir, 'ccw')
- for k = 1:length(B)
- B{k} = B{k}(end:-1:1, :);
- end
- end
这段代码实现了对二值图像中对象的边界进行跟踪,最终输出一个包含所有对象边界坐标的 cell 数组。
主要函数 boundaries 接受三个参数:BW 表示输入的二值图像,conn 表示连接性(8 连通或 4 连通),dir 表示跟踪边界的方向(顺时针或逆时针)。根据不同的输入情况,函数会进行相应的处理。其中,首先根据输入参数确定连接性和跟踪方向,然后使用 bwlabel 函数标记输入二值图像中的对象,并初始化一个 cell 数组 B 用于存储边界坐标。
接着,对标记矩阵进行填充操作以简化边界跟踪过程,并定义了一些变量和查找表用于指导边界跟踪的方向。通过在图像中寻找起始位置,然后按照设定的方向依次跟踪边界像素,直到形成完整的边界闭合路径。最后,根据跟踪方向对边界路径进行修正,最终将每个对象的边界坐标存储在 cell 数组 B 中,并按照设定的方向进行排序。
需要注意的是,该代码是基于 MATLAB 的图像处理工具箱编写的,涉及到图像处理中的边界跟踪算法,主要通过对相邻像素进行搜索和遍历完成对象边界的提取。
以下是对代码的详细分析:
函数名:boundaries
功能:跟踪二值图像中对象的边界
输入参数:
输出参数:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。