赞
踩
目录
卷积在各种计算机视觉任务中表现出色,但是由于卷积层提取冗余特征,其计算资源需求巨大。虽然过去用于改善网络效率的各种模型压缩策略和网络设计,包括网络剪枝、权重量化、低秩分解和知识蒸馏等。然而,这些方法都被视为后处理步骤,因此它们的性能通常受到给定初始模型的上限约束。而网络设计另辟蹊径,试图减少密集模型参数中的固有冗余,进一步开发轻量级网络模型。
为了解决上述问题,论文(SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy (thecvf.com))提出了一个新的卷积模块,名为SCConv
,这个模块利用了两个组件:空间重建单元(SRU
)和通道重建单元(CRU
)。
此外,SCConv 是一个即插即用的架构单元,可以直接替换各种卷积神经网络中的标准卷积。
SCConv 模块旨在有效地限制特征冗余,不仅减少了模型参数和FLOPs的数量,而且增强了特征表示的能力。实际上,SCConv 模块提供了一种新的视角来看待CNNs的特征提取过程,提出了一种更有效地利用空间和通道冗余的方法,从而在减少冗余特征的同时提高模型性能。实验结果显示,嵌入了 SCConv 模块的模型能够通过显著降低复杂性和计算成本,减少冗余特征,从而达到更好的性能。
SRU
CRU
加入融合ScConv的C2f模块,在ultralytics包中的nn包的modules中的block.py文件中添加改进模块。代码如下:
- class SRU(nn.Module):
- def __init__(self,
- oup_channels: int,
- group_num: int = 16,
- gate_treshold: float = 0.5
- ):
- super().__init__()
-
- self.gn = GroupBatchnorm2d(oup_channels, group_num=group_num)
- self.gate_treshold = gate_treshold
- self.sigomid = nn.Sigmoid()
-
- def forward(self, x):
- gn_x = self.gn(x)
- w_gamma = self.gn.gamma / sum(self.gn.gamma)
- reweigts = self.sigomid(gn_x * w_gamma)
- # Gate
- info_mask = reweigts >= self.gate_treshold
- noninfo_mask = reweigts < self.gate_treshold
- x_1 = info_mask * x
- x_2 = noninfo_mask * x
- x = self.reconstruct(x_1, x_2)
- return x
-
- def reconstruct(self, x_1, x_2):
- x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)
- x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)
- return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)
-
-
- class CRU(nn.Module):
- '''
- alpha: 0<alpha<1
- '''
-
- def __init__(self,
- op_channel: int,
- alpha: float = 1 / 2,
- squeeze_radio: int = 2,
- group_size: int = 2,
- group_kernel_size: int = 3,
- ):
- super().__init__()
- self.up_channel = up_channel = int(alpha * op_channel)
- self.low_channel = low_channel = op_channel - up_channel
- self.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)
- self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)
- # up
- self.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,
- padding=group_kernel_size // 2, groups=group_size)
- self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)
- # low
- self.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,
- bias=False)
- self.advavg = nn.AdaptiveAvgPool2d(1)
-
- def forward(self, x):
- # Split
- up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
- up, low = self.squeeze1(up), self.squeeze2(low)
- # Transform
- Y1 = self.GWC(up) + self.PWC1(up)
- Y2 = torch.cat([self.PWC2(low), low], dim=1)
- # Fuse
- out = torch.cat([Y1, Y2], dim=1)
- out = F.softmax(self.advavg(out), dim=1) * out
- out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
- return out1 + out2
-
-
- class ScConv(nn.Module):
- # https://github.com/cheng-haha/ScConv/blob/main/ScConv.py
- def __init__(self,
- op_channel: int,
- group_num: int = 16,
- gate_treshold: float = 0.5,
- alpha: float = 1 / 2,
- squeeze_radio: int = 2,
- group_size: int = 2,
- group_kernel_size: int = 3,
- ):
- super().__init__()
- self.SRU = SRU(op_channel,
- group_num=group_num,
- gate_treshold=gate_treshold)
- self.CRU = CRU(op_channel,
- alpha=alpha,
- squeeze_radio=squeeze_radio,
- group_size=group_size,
- group_kernel_size=group_kernel_size)
-
- def forward(self, x):
- x = self.SRU(x)
- x = self.CRU(x)
- return x
-
-
- class Bottleneck_ScConv(Bottleneck):
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- super().__init__(c1, c2, shortcut, g, k, e)
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, k[0], 1)
- self.cv2 = ScConv(c2)
-
-
- class C2f_ScConv(C2f):
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
- super().__init__(c1, c2, n, shortcut, g, e)
- self.m = nn.ModuleList(Bottleneck_ScConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
对融合ScConv的C2f模块的进行注册和引用,注册方式参考YOLOv8改进算法之添加CA注意力机制-CSDN博客
在tasks.py中的parse_model中添加C2f_ScConv:
新建相应的yaml文件,代码如下:
- # Ultralytics YOLO 本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。