当前位置:   article > 正文

谷歌发布开源大模型 Gemma,评测+最佳微调实践来啦!_gemma微调

gemma微调

Gemma 是由 Google 推出的一系列轻量级、先进的开源模型,他们是基于 Google Gemini 模型的研究和技术而构建。它们是一系列text generation,decoder-only的大型语言模型,对英文的支持较好,具有模型权重开源、并提供预训练版本(base模型)和指令微调版本(chat模型)。

本次 Gemma 开源提供了四个大型语言模型,提供了 2B 和 7B 两种参数规模的版本,每种都包含了预训练版本(base模型)和指令微调版本(chat模型)。

官方除了提供 pytorch 版本之外,也提供了GGUF版本,可在各类消费级硬件上运行,无需数据量化处理,并拥有高达 8K tokens 的处理能力,Gemma 7B模型的预训练数据高达6万亿Token,也证明了通过大量的高质量数据训练,可以大力出奇迹,小模型也可以持续提升取得好的效果。

那 Gemma 模型的能力怎么样呢?下面是Gemma模型的基础版本与其他开源模型在公开榜单的对比:

图片

数据来源__https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

从榜单中可以看到,Gemma-7B模型超过了Mistral-7B模型,取得了一个很好的结果。技术报告:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

开源代码:

https://github.com/google/gemma_pytorch

目前社区已经支持 Gemma的下载、推理、微调一站式体验, 并提供对应最佳实践教程,欢迎感兴趣的开发者小伙伴们来玩!

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型面试与技术交流群, 想要进交流群、获取完整源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2060,备注:技术交流

用通俗易懂的方式讲解系列

环境配置与安装

  1. python 3.10及以上版本

  2. pytorch 1.12及以上版本,推荐2.0及以上版本

  3. 建议使用CUDA 11.4及以上

  4. transformers>=4.38.0

Gemma模型链接和下载

支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir = snapshot_download("AI-ModelScope/gemma-7b-it")
  • 1
  • 2

Gemma模型推理

需要使用tokenizer.apply_chat_template获取指令微调模型的prompt template:

from modelscope import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("AI-ModelScope/gemma-7b-it")
model = AutoModelForCausalLM.from_pretrained("AI-ModelScope/gemma-7b-it", torch_dtype = torch.bfloat16, device_map="auto")

input_text = "hello."
messages = [
    {"role": "user", "content": input_text}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
input_ids = tokenizer([text], return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids,max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

资源消耗:

图片

模型微调和微调后推理

我们使用SWIFT来对模型进行微调,SWIFT是魔搭社区官方提供的LLM&AIGC模型微调推理框架。

微调代码开源地址:

https://github.com/modelscope/swift

我们使用hc3-zh分类数据集进行微调. 任务是: 判断数据样本的回答来自human还是chatgpt.

环境准备:

git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]
  • 1
  • 2
  • 3

微调脚本: LoRA

# https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/gemma_2b_instruct/lora
# Experimental environment: V100, A10, 3090
# 12GB GPU memory

CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model_id_or_path AI-ModelScope/gemma-2b-it \
    --sft_type lora \
    --tuner_backend swift \
    --template_type AUTO \
    --dtype AUTO \
    --output_dir output \
    --dataset hc3-zh \
    --train_dataset_sample 5000 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.01 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.1 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

训练过程也支持本地数据集,需要指定如下参数:

--custom_train_dataset_path xxx.jsonl \
--custom_val_dataset_path yyy.jsonl \
  • 1
  • 2

微调后推理脚本: (这里的ckpt_dir需要修改为训练生成的checkpoint文件夹)

# Experimental environment: V100, A10, 3090
CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --ckpt_dir "output/gemma-2b-instruct/vx_xxx/checkpoint-xxx" \
    --load_dataset_config true \
    --max_length 2048 \
    --max_new_tokens 2048 \
    --temperature 0.1 \
    --top_p 0.7 \
    --repetition_penalty 1. \
    --do_sample true \
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

微调的可视化结果

训练准确率:

图片

训练后生成样例:

[PROMPT]<bos><start_of_turn>user
Classification Task: Are the following responses from a human or from ChatGPT?
Question: 能帮忙解决一下吗
Answer: 当然,我很乐意帮助你解决问题。请提出你的问题,我会尽力给出最好的帮助。
Category: Human, ChatGPT
Output:<end_of_turn>
<start_of_turn>model
[OUTPUT]ChatGPT<end_of_turn>

[LABELS]ChatGPT
---------------------------------------------------
[PROMPT]<bos><start_of_turn>user
Classification Task: Are the following responses from a human or from ChatGPT?
Question: 请问哪样存钱好
Answer: 若需了解招商银行存款利率,可进入招行主页在网页右下侧“实时金融信息”下方选择“存款利率”查看。
Category: Human, ChatGPT
Output:<end_of_turn>
<start_of_turn>model
[OUTPUT]Human<end_of_turn>

[LABELS]Human
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/262405?site
推荐阅读
相关标签
  

闽ICP备14008679号