赞
踩
在上节中我们用Pytorch读取自己的数据集:https://blog.csdn.net/lifei1229/article/details/105519924。
在这节中,我们继续完成模型构建及其训练。可参考我之前写的:Pytorch训练模板
本次实验采用ResNet模型。代码很简单,网上找下有很多,也可以用torchvision里面官方写的。
import torch from torch import nn from torch.nn import functional as F class ResBlk(nn.Module): """ resnet block """ def __init__(self, ch_in, ch_out, stride=1): """ :param ch_in: :param ch_out: """ super(ResBlk, self).__init__() #下面是瓶颈层 self.conv1 = nn.Conv2d( ch_in,ch_out, kernel_size=3,stride=stride,padding=1) #padding=1保证输出大小一致 self.bn1 = nn.BatchNorm2d(ch_out) self.conv2 = nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1) self.bn2 = nn.BatchNorm2d(ch_out) self.extra = nn.Sequential() if ch_out != ch_in: #保存通道一致,才可以相加 # [b, ch_in, h, w] => [b, ch_out, h, w] self.extra = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride), nn.BatchNorm2d(ch_out)) def forward(self, x): """ :param x: [b, ch, h, w] :return: """ out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。