赞
踩
作者:桂。
时间:2017-03-06 20:57:22
链接:http://www.cnblogs.com/xingshansi/p/6511916.html
前言
本文为Hilbert变换一篇的内容补充,主要内容为:
1)EMD原理介绍
2)代码分析
3)一种权衡的小trick
4)问题补充
内容主要为自己的学习总结,并多有借鉴他人,最后一并给出链接。
一、EMD原理介绍
A-EMD的意义
很多人都知道EMD(Empirical Mode Decomposition)可以将信号分解不同频率特性,并且结合Hilbert求解包络以及瞬时频率。EMD、Hilbert、瞬时频率三者有无内在联系?答案是:有。
按照Hilbert变换一篇的介绍,
f(t)=dΦ(t)d(t)f(t)=dΦ(t)d(t)
然而,这样求解瞬时频率在某些情况下有问题,可能出现f(t)f(t)为负的情况:我1秒手指动5下,频率是5Hz;反过来,频率为8Hz时,手指1秒动8下,可如果频率为-5Hz呢?负频率没有意义。
考虑信号
x(t)=x1(t)+x2(t)=A1ejω1t+A2ejω2t=A(t)ejφ(t)x(t)=x1(t)+x2(t)=A1ejω1t+A2ejω2t=A(t)ejφ(t)
为了简单起见,假设A1A1和A2A2恒定,且ω1ω1和ω2ω2是正的。信号x(t)x(t)的频谱应由两个在ω1ω1和ω2ω2的δδ函数组成,即
X(ω)=A1δ(ω−ω1)+A2δ(ω−ω2)X(ω)=A1δ(ω−ω1)+A2δ(ω−ω2)
因为假设ω1ω1和ω2ω2是正的,所以该信号解析。求得相位
Φ(t)=A1sinω1t+A2sinω2tA1cosω1t+A2cosω2tΦ(t)=A1sinω1t+A2sinω2tA1cosω1t+A2cosω2t
分别取两组参数,对tt求导,得到对应参数下的瞬时频率:
参数:
ω1=10Hzω1=10Hz和ω2=20Hzω2=20Hz.
- 组1:{A1=0.2,A2=1A1=0.2,A2=1};
- 组2:{A1=1.2,A2=1A1=1.2,A2=1}
对于组2,瞬时频率出现了负值。
可见:
对任意信号进行Hilbert变换,可能出现无法解释、缺乏实际意义的频率分量。Norden E. Hung等人对瞬时频率进行研究后发现,只有满足特定条件的信号,其瞬时频率才具有物理意义,并将此类信号成为:IMF/基本模式分量。
B-EMD基本原理
此处给一个原理图:
C-基本模式分量(IMF)
EMD分解的IMF其瞬时频率具有实际物理意义,原因有两点:
限定1即要求信号具有类似传统平稳高斯过程的分布;限定2要求局部均值为0,同时用局部最大、最小值的包络作为近似,从而信号局部对称,避免了不对称带来的瞬时频率波动。
D-VMD
关于VMD(Variational Mode Decomposition),具体原理可以参考其论文,这里我们只要记住一点:其分解的各个基本分量——即各解析信号的瞬时频率具有实际的物理意义。
二、代码分析
首先给出信号分别用VMD、EMD的分解结果:
给出对应的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
附上两个子程序的code.
VMD:
EMD:
关于EMD,有对应的工具箱。VMD也有扩展的二维分解,此处不再展开。
三、一种权衡的小trick
关于瞬时频率的原理以及代码,参考另一篇博文。
比较来看:
能不能取长补短呢?
自己之前做了一个小code,放在这里,供大家交流使用(此理论为自己首创,版权所有,拿去也不介意!(●'◡'●))。
给定一个信号,下图是EMD分解结果,分解出了5个分量。
再来一个VMD(设定分量个数为3)的分解结果:
比较两个结果,可以发现:VMD的低频分量,更容易表达出经济波动的大趋势,而EMD则不易观察该特性。
或许有人会说:几个EMD分量叠加一下,也会有该效果,但如果不观察分解的数据,如何确定几个分量相加呢?更何况EMD总的IMF个数也是未知!
VMD的优势观察到了,但如何确定分量个数呢?
再来一个效果图:
这里分析了VMD分量从1~9,9种情况下某特征的曲线,可以观察到:个数增加到一定数量,曲线有了明显的下弯曲现象(该特性容易借助曲率,进行量化分析,不再展开),这个临界的个数就是分解的合适数量,此处:K=3,因为到4就有了明显的下弯曲。
可见通过该特征,即可理论上得出最优K。下面讲一讲这个某特征为何物?
上一段代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
没错,该特征就是:分量瞬时频率的均值。如果分解个数过大,则分量会出现断断絮絮地现象,特别是在高频,这样一来,即使是高频,平均瞬时频率反而低一些,这也是下弯曲的根本原因。
这个小trick就介绍到这里。
四、问题补充
HHT算法中,有两处存在端点效应,VMD是否也有呢?这一点没有再去验证。另外,关于Hilbert的端点效应,在另一篇博文已经给出。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。