当前位置:   article > 正文

【节点分类】python实现:4种(GNN,GAN,SAGE,APPNP)图神经网络(-dgl库-pytorch-cuda-)_sagegnn结构示意图

sagegnn结构示意图

信息系统建模作业,要求是使用四种不同的节点表征方法两个3k+数据集
环境:pytorch cuda11.1 dgl-0.6.1
(cuda环境配置指路:我发的第一篇文章)

dgl库各种网络功能介绍:
https://zhuanlan.zhihu.com/p/161853672
在这里插入图片描述
在这里插入图片描述

参考代码资料:
GNN
GAT
SAGE

数据集:CiteSeer PubMed
在这里插入图片描述
在这里插入图片描述

GraphConv基础图卷积

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import citation_graph as citegrh
from dgl.nn.pytorch.conv.graphconv import GraphConv

#加载数据集,另一个数据集使用citegrh.load_pubmed()
dataset = citegrh.load_citeseer()
print('Number of categories:', dataset.num_classes)

#dataset是list,数据集为单图,g是graph类
g = dataset[0]
#数据放在gpu上
g = g.to('cuda')

#构造网络
class GCN(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GraphConv(in_feats, h_feats) #特征维度映射
        self.conv2 = GraphConv(h_feats, num_classes) #映射到节点类别

    def forward(self, g, in_feat):
        # g:数据Graph信息,经过归一化的邻接矩阵
        # in_feat:节点初始化特征信息
        h = self.conv1(g, in_feat)
        h = F.relu(h)
        h = self.conv2(g, h)
        return h

# 实例化GCN模型在gpu上,hidden维度设定为16,输入维度和输出维度由数据集确定。
model = GCN(g.ndata['feat'].shape[1], 16, dataset.num_classes).to('cuda')

#训练网络
def train(g, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
    best_val_acc = 0
    best_test_acc = 0

    #.ndata属性是一个dict,含五个key
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    for e in range(100):
        # Forward
        logits = model(g, features)

        # Compute prediction
        pred = logits.argmax(1) #每个样本全连接输出中最大的值,预测值

        # Compute loss
        loss = F.cross_entropy(logits[train_mask], labels[train_mask])

        # Compute accuracy on training/validation/test
        train_acc = (pred[train_mask] == labels[train_mask]).float().mean()
        val_acc = (pred[val_mask] == labels[val_mask]).float().mean()
        test_acc = (pred[test_mask] == labels[test_mask]).float().mean()

        # Save the best validation accuracy and the corresponding test accuracy.
        if best_val_acc < val_acc:
            best_val_acc = val_acc
            best_test_acc = test_acc

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if e % 5 == 0:
            print('In epoch {}, loss: {:.3f}, val acc: {:.3f} (best {:.3f}), test acc: {:.3f} (best {:.3f})'.format(
                e, loss, val_acc, best_val_acc, test_acc, best_test_acc))


train(g, model)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77

GATConv注意力机制

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import citation_graph as citegrh
import time

def load_data():
    data = citegrh.load_pubmed() #list
    g = data[0] # 单图
    g = g.to('cuda') #放到gpu上
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    test_mask = g.ndata['test_mask']
    val_mask = g.ndata['val_mask']

    return g, features, labels, train_mask, test_mask, val_mask

#构造注意力图网络
class GATLayer(nn.Module):
    def __init__(self, g, in_dim, out_dim):
        super(GATLayer, self).__init__()
        self.g = g
        # step1 : 下层嵌入的线性变换
        self.fc = nn.Linear(in_dim, out_dim, bias=False)
        # step2 : 计算邻居节点对的非标准化注意力得分
        self.attn_fc = nn.Linear(2 * out_dim, 1, bias=False)

    def edge_attention(self, edges):
        # 计算step2需要的edge UDF
        z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)
        a = self.attn_fc(z2)
        return {'e': F.leaky_relu(a)}

    def message_func(self, edges):
        # step 3 & 4需要的message UDF
        return {'z': edges.src['z'], 'e': edges.data['e']}

    def reduce_func(self, nodes):
        # 3 & 4 reduce UDF
        # step3 : 标准化每个节点的入边的注意力得分
        alpha = F.softmax(nodes.mailbox['e'], dim=1)
        # step4 : 聚合邻居节点的嵌入信息,并按照注意力得分缩放
        h = torch.sum(alpha * nodes.mailbox['z'], dim=1)
        return {'h': h}

    def forward(self, h):
        # step1
        z = self.fc(h)
        self.g.ndata['z'] = z
        # step2
        self.g.apply_edges(self.edge_attention)
        # step 3 & 4
        self.g.update_all(self.message_func, self.reduce_func)
        return self.g.ndata.pop('h')

# 用单头注意力构建多头注意力层
class MultiHeadGATLayer(nn.Module):
    def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):
        super(MultiHeadGATLayer, self).__init__()
        self.heads = nn.ModuleList()
        for i in range(num_heads):
            self.heads.append(GATLayer(g, in_dim, out_dim))
        self.merge = merge

    def forward(self, h):
        head_outs = [attn_head(h) for attn_head in self.heads]
        if self.merge == 'cat':
            # concat 输出特征
            return torch.cat(head_outs, dim=1)
        else:
            # 聚合信息,用mean方法
            return torch.mean(torch.stack(head_outs))

class GAT(nn.Module):
    def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):
        super(GAT, self).__init__()
        self.layer1 = MultiHeadGATLayer(g, in_dim, hidden_dim, num_heads)
        # 输入维度是hidden_dim * num_heads,输出是多头连接的
        # 输出层是一个注意力头
        self.layer2 = MultiHeadGATLayer(g, hidden_dim * num_heads, out_dim, 1)

    def forward(self, h):
        h = self.layer1(h)
        h = F.elu(h)
        h = self.layer2(h)
        return h

# 加载数据
g, features, labels, train_mask, test_mask, val_mask = load_data()

# 实例化网络,两个注意力头,每个头的 hidden size = 8
net = GAT(g,in_dim=features.size()[1],hidden_dim=8,out_dim=7,num_heads=2).to('cuda')

# create optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=1e-2)
best_val_acc = 0
best_test_acc = 0

# main loop
dur = []
for epoch in range(100):
    if epoch >= 3:
        t0 = time.time()

    logits = net(features)
    # Compute prediction
    pred = logits.argmax(1)
    # Compute loss
    loss = F.cross_entropy(logits[train_mask], labels[train_mask])
    # Compute accuracy on training/validation/test
    train_acc = (pred[train_mask] == labels[train_mask]).float().mean()
    val_acc = (pred[val_mask] == labels[val_mask]).float().mean()
    test_acc = (pred[test_mask] == labels[test_mask]).float().mean()

    # Save the best validation accuracy and the corresponding test accuracy.
    if best_val_acc < val_acc:
        best_val_acc = val_acc
        best_test_acc = test_acc

    # Backward
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 5 == 0:
        print('In epoch {}, loss: {:.3f}, val acc: {:.3f} (best {:.3f}), test acc: {:.3f} (best {:.3f})'.format(
            epoch, loss, val_acc, best_val_acc, test_acc, best_test_acc))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128

SAGEConv采样聚类适用于大规模图

import dgl
import numpy as np
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from dgl.nn.pytorch.conv.sageconv import SAGEConv
import time
from dgl.data import citation_graph
import tqdm

# 邻居采样器
class NeighborSampler(object):
    def __init__(self, g, fanouts):
        """
        g 为 DGLGraph;
        fanouts 为采样节点的数量,两个参数,分别指一阶邻居采样和二阶邻居采样数
        """
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # 对每个节点实现邻居采样,返回对应子图
            # replace=True 用采样节点代替所有邻居节点
            frontier = dgl.sampling.sample_neighbors(g, seeds, fanout, replace=True)
            # 将子图frontier转为可以传递消息的二部图
            block = dgl.to_block(frontier, seeds)
            # 获取新图的源节点作为种子节点
            # srcdata表示源节点信息,因采样和聚合是相反的操作过程
            seeds = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return blocks

# 构建适用于大图的sage网络
class GraphSAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        # 输入层,四种聚合方式,此处使用"gcn"
        # 参数 : 输入特征,输出特征,聚合方式(特征drop概率=0,输出层bias=True,归一化=None,更新节点特征的激活函数=None)
        self.layers.append(SAGEConv(in_feats, n_hidden, 'gcn'))
        # 隐藏层
        for i in range(1, n_layers - 1):
            self.layers.append(SAGEConv(n_hidden, n_hidden, 'gcn'))
        # 输出层
        self.layers.append(SAGEConv(n_hidden, n_classes, 'gcn'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    # block是采样获得的子图(二部图)
    # x表示节点特征
    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h_dst = h[:block.number_of_dst_nodes()]
            h = layer(block, (h, h_dst))
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h

    # 用于评估测试
    def inference(self, g, x, batch_size):
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(),
                         self.n_hidden if l != len(self.layers) - 1 else self.n_classes)
            for start in tqdm.trange(0, len(nodes), batch_size):
                end = start + batch_size
                batch_nodes = nodes[start:end]
                block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
                input_nodes = block.srcdata[dgl.NID]
                h = x[input_nodes]
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
                y[start:end] = h.cpu()
            x = y
        return y

# 计算准确率
def evaluate(model, g, inputs, labels, val_mask, batch_size):
    """
    评估模型,调用 model 的 inference 函数
    """
    model.eval()
    with torch.no_grad():
        label_pred = model.inference(g, inputs, batch_size)
    model.train()
    return (torch.argmax(label_pred[val_mask], dim=1) == labels[val_mask]).float().sum() / len(label_pred[val_mask])

def load_subtensor(g, labels, seeds, input_nodes, device):
    """
    将一组节点的特征和标签复制到 GPU 上。
    """
    batch_inputs = g.ndata['features'][input_nodes].to(device)
    batch_labels = labels[seeds].to(device)
    return batch_inputs, batch_labels

# 参数设置
gpu = 0
num_epochs = 50
num_hidden = 16
num_layers = 2
fan_out = '5,10'# 一阶采样5,二阶10
batch_size = 50
log_every = 1  # 记录日志的频率
eval_every = 5
lr = 0.001
dropout = 0.5
num_workers = 0

if gpu >= 0:
    device = th.device('cuda:%d' % gpu)
else:
    device = th.device('cpu')

# 读取数据,另一个数据集使用citation_graph.CiteseerGraphDataset()
data = citation_graph.PubmedGraphDataset()
graph = data[0] # 取单图
train_mask = graph.ndata['train_mask']
val_mask = graph.ndata['val_mask']
test_mask = graph.ndata['test_mask']
features = graph.ndata['feat']
in_feats = features.shape[1]
labels = graph.ndata['label']
n_classes = data.num_classes

# Construct graph
g = data.__getitem__(0) #为DGL.Graph类
g.ndata['features'] = features

train_nid = th.LongTensor(np.nonzero(train_mask)[0])
val_nid = th.LongTensor(np.nonzero(val_mask)[0])
train_mask = th.BoolTensor(train_mask)
val_mask = th.BoolTensor(val_mask)
test_mask = th.BoolTensor(test_mask)

# Create sampler
sampler = NeighborSampler(g, [int(fanout) for fanout in fan_out.split(',')])

# Create PyTorch DataLoader for constructing blocks
dataloader = DataLoader(
    dataset=train_nid.numpy(),
    batch_size=batch_size,
    collate_fn=sampler.sample_blocks,
    shuffle=True,
    drop_last=False,
    num_workers=num_workers)

# Define model and optimizer
model = GraphSAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout)
loss_fcn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)

# Training loop
best_val_acc = 0

for epoch in range(num_epochs):
    for step, blocks in enumerate(dataloader):

        tic_step = time.time()

        input_nodes = blocks[0].srcdata[dgl.NID]  #特殊二部图,输入节点的特征向量
        seeds = blocks[-1].dstdata[dgl.NID] #输出节点的标签

        # Load the input features as well as output labels
        batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, device) #输入节点的特征和标签

        # Compute loss and prediction
        batch_inputs = batch_inputs.to("cpu")
        batch_labels = batch_labels.to("cpu")
        batch_pred = model(blocks, batch_inputs).to(device)
        batch_pred = batch_pred.to("cpu")
        loss = loss_fcn(batch_pred, batch_labels).to(device)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        print('| Loss {:.4f}'.format(loss.item()))

        if epoch % 5 == 0:
            train_acc = evaluate(model, g, g.ndata['features'], labels, train_mask, batch_size)
            val_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, batch_size)
            print('Epoch {:05d} | Val ACC {:.4f} | Train ACC {:.4f}'.format(epoch, val_acc.item(), train_acc.item()))

# 模型训练完毕,检查test集合的acc
acc_test = evaluate(model, g, g.ndata['features'], labels, test_mask, batch_size)
print('Test ACC: %.4f' % (acc_test.item()))






  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212

APPNPConv-PageRank的改良版本

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import citation_graph as citegrh
from dgl.nn.pytorch.conv.graphconv import GraphConv
from dgl.nn.pytorch.conv.appnpconv import APPNPConv

dataset = citegrh.load_citeseer() #更换数据集使用citegrh.load_pubmed()
print('Number of categories:', dataset.num_classes)

# 单图
g = dataset[0]
# 数据放在gpu上
g = g.to('cuda')

# 构造APPNP网络,该网络使用类似PageRank框架更新节点嵌入
class APPNP(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(APPNP, self).__init__()
        self.conv1 = GraphConv(in_feats, h_feats)
        # APPNP层,特征维度不变。
        '''
         k : int, The number of iterations 
         alpha : float, The teleport probability
        '''
        self.conv2 = APPNPConv(k=3, alpha=0.5)
        # 维度映射到节点类别
        self.conv3 = GraphConv(h_feats, num_classes)

    def forward(self, g, in_feat):
        h1 = self.conv1(g, in_feat)
        h2 = self.conv2(g, h1)
        h = self.conv2(g, h2)
        return h

# 实例化到gpu,hidden维度设定为16,输入维度和输出维度由数据集确定。
model = APPNP(g.ndata['feat'].shape[1], 16, dataset.num_classes).to('cuda')


def train(g, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
    best_val_acc = 0
    best_test_acc = 0

    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    for e in range(3000):
        # Forward
        logits = model(g, features)

        # Compute prediction
        pred = logits.argmax(1) #每个样本全连接输出中最大的值,预测值

        # Compute loss
        loss = F.cross_entropy(logits[train_mask], labels[train_mask])

        # Compute accuracy on training/validation/test
        train_acc = (pred[train_mask] == labels[train_mask]).float().mean()
        val_acc = (pred[val_mask] == labels[val_mask]).float().mean()
        test_acc = (pred[test_mask] == labels[test_mask]).float().mean()

        # Save the best validation accuracy and the corresponding test accuracy.
        if best_val_acc < val_acc:
            best_val_acc = val_acc
            best_test_acc = test_acc

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if e % 5 == 0:
            print('In epoch {}, loss: {:.3f}, val acc: {:.3f} (best {:.3f}), test acc: {:.3f} (best {:.3f})'.format(
                e, loss, val_acc, best_val_acc, test_acc, best_test_acc))


train(g, model)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

分类结果

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/306158
推荐阅读
相关标签
  

闽ICP备14008679号