赞
踩
(1)非线性映射-理论基础
(2)最大化分类边界-方法核心
(3)支持向量-计算结果
(4)小样本学习方法
(5)最终的决策函数只有少量支持向量决定,避免了“维数灾难”
(6)少数支持向量决定最终结果—->可“剔除”大量冗余样本+算法简单+具有鲁棒性(体现在3个方面)
(7)学习问题可表示为凸优化问题—->全局最小值
(8)可自动通过最大化边界控制模型,但需要用户指定核函数类型和引入松弛变量
(9)适合于小样本,优秀泛化能力(因为结构风险最小)
(10)泛化错误率低,分类速度快,结果易解释
当训练数据线性可分时,存在无穷个分离超平面可以将两类数据正确分开。
感知机利用误分类最小策略,求得分离超平面,不过此时的解有无穷多个。
线性可分支持向量机利用间隔最大化求得最优分离超平面,这时,解是唯一的。另一方面,此时的分隔超平面所产生的分类结果是最鲁棒的,对未知实例的泛化能力最强。
然后应该借此阐述,几何间隔&#
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。