赞
踩
NLP之TEA:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码
目录
相关文章
NLP之TEA:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)
NLP之TEA:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码
- # coding:utf-8
- import jieba
- import numpy as np
-
-
- #打开词典文件,返回列表
- def open_dict(Dict = 'hahah', path=r'data/Textming'):
- path = path + '%s.txt' % Dict
- dictionary = open(path, 'r', encoding='utf-8')
- dict = []
- for word in dictionary:
- word = word.strip('\n')
- dict.append(word)
- return dict
-
-
-
- def judgeodd(num):
- if (num % 2) == 0:
- return 'even'
- else:
- return 'odd'
-
-
- #注意,这里你要修改path路径。
- deny_word = open_dict(Dict = '否定词', path= r'F:/File_Python/Resources/data/Textming/')
- posdict = open_dict(Dict = 'positive', path= r'F:/File_Python/Resources/data/Textming/')
- negdict = open_dict(Dict = 'negative', path= r'F:/File_Python/Resources/data/Textming/')
-
- degree_word = open_dict(Dict = '程度级别词语', path= r'F:/File_Python/Resources/data/Textming/')
- mostdict = degree_word[degree_word.index('extreme')+1 : degree_word.index('very')]#权重4,即在情感词前乘以4
- verydict = degree_word[degree_word.index('very')+1 : degree_word.index('more')]#权重3
- moredict = degree_word[degree_word.index('more')+1 : degree_word.index('ish')]#权重2
- ishdict = degree_word[degree_word.index('ish')+1 : degree_word.index('last')]#权重0.5
-
-
-
- def sentiment_score_list(dataset):
- seg_sentence = dataset.split('。')
-
- count1 = []
- count2 = []
- for sen in seg_sentence: #循环遍历每一个评论
- segtmp = jieba.lcut(sen, cut_all=False) #把句子进行分词,以列表的形式返回
- i = 0 #记录扫描到的词的位置
- a = 0 #记录情感词的位置
- poscount = 0 #积极词的第一次分值
- poscount2 = 0 #积极词反转后的分值
- poscount3 = 0 #积极词的最后分值(包括叹号的分值)
- negcount = 0
- negcount2 = 0
- negcount3 = 0
- for word in segtmp:
- if word in posdict: # 判断词语是否是情感词
- poscount += 1
- c = 0
- for w in segtmp[a:i]: # 扫描情感词前的程度词
- if w in mostdict:
- poscount *= 4.0
- elif w in verydict:
- poscount *= 3.0
- elif w in moredict:
- poscount *= 2.0
- elif w in ishdict:
- poscount *= 0.5
- elif w in deny_word:
- c += 1
- if judgeodd(c) == 'odd': # 扫描情感词前的否定词数
- poscount *= -1.0
- poscount2 += poscount
- poscount = 0
- poscount3 = poscount + poscount2 + poscount3
- poscount2 = 0
- else:
- poscount3 = poscount + poscount2 + poscount3
- poscount = 0
- a = i + 1 # 情感词的位置变化
-
- elif word in negdict: # 消极情感的分析,与上面一致
- negcount += 1
- d = 0
- for w in segtmp[a:i]:
- if w in mostdict:
- negcount *= 4.0
- elif w in verydict:
- negcount *= 3.0
- elif w in moredict:
- negcount *= 2.0
- elif w in ishdict:
- negcount *= 0.5
- elif w in degree_word:
- d += 1
- if judgeodd(d) == 'odd':
- negcount *= -1.0
- negcount2 += negcount
- negcount = 0
- negcount3 = negcount + negcount2 + negcount3
- negcount2 = 0
- else:
- negcount3 = negcount + negcount2 + negcount3
- negcount = 0
- a = i + 1
- elif word == '!' or word == '!': ##判断句子是否有感叹号
- for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
- if w2 in posdict or negdict:
- poscount3 += 2
- negcount3 += 2
- break
- i += 1 # 扫描词位置前移
-
-
- # 以下是防止出现负数的情况
- pos_count = 0
- neg_count = 0
- if poscount3 < 0 and negcount3 > 0:
- neg_count += negcount3 - poscount3
- pos_count = 0
- elif negcount3 < 0 and poscount3 > 0:
- pos_count = poscount3 - negcount3
- neg_count = 0
- elif poscount3 < 0 and negcount3 < 0:
- neg_count = -poscount3
- pos_count = -negcount3
- else:
- pos_count = poscount3
- neg_count = negcount3
-
- count1.append([pos_count, neg_count])
- count2.append(count1)
- count1 = []
-
- return count2
-
- def sentiment_score(senti_score_list):
- score = []
- for review in senti_score_list:
- score_array = np.array(review)
- Pos = np.sum(score_array[:, 0])
- Neg = np.sum(score_array[:, 1])
- AvgPos = np.mean(score_array[:, 0])
- AvgPos = float('%.1f'%AvgPos)
- AvgNeg = np.mean(score_array[:, 1])
- AvgNeg = float('%.1f'%AvgNeg)
- StdPos = np.std(score_array[:, 0])
- StdPos = float('%.1f'%StdPos)
- StdNeg = np.std(score_array[:, 1])
- StdNeg = float('%.1f'%StdNeg)
- score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg]) #积极、消极情感值总和(最重要),积极、消极情感均值,积极、消极情感方差。
- return score
-
- def EmotionByScore(data):
- result_list=sentiment_score(sentiment_score_list(data))
- return result_list[0][0],result_list[0][1]
-
-
-
- def JudgingEmotionByScore(Pos, Neg):
- if Pos > Neg:
- str='1'
- elif Pos < Neg:
- str='-1'
- elif Pos == Neg:
- str='0'
- return str
-
-
-
- data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
- data2= '救命,你是个坏人,救命,你不要碰我,救命,你个大坏蛋!'
- data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
-
-
- print(sentiment_score(sentiment_score_list(data1)))
- print(sentiment_score(sentiment_score_list(data2)))
- print(sentiment_score(sentiment_score_list(data3)))
-
-
- a,b=EmotionByScore(data1)
-
- emotion=JudgingEmotionByScore(a,b)
- print(emotion)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。