赞
踩
排序损失函数
对于包含 N N N个样本的batch数据 D ( x 1 , x 2 , y ) D(x1,x2,y) D(x1,x2,y), x 1 x1 x1, x 2 x2 x2是给定的待排序的两个输入, y y y代表真实的标签,属于 { 1 , − 1 } \{1,-1\} {1,−1}。当 y = 1 y=1 y=1是, x 1 x1 x1应该排在 x 2 x2 x2之前, y = − 1 y=-1 y=−1是, x 1 x1 x1应该排在 x 2 x2 x2之后。第 n n n个样本对应的 l o s s loss loss计算如下:
l n = max ( 0 , − y ∗ ( x 1 − x 2 ) + margin ) l_{n}=\max (0,-y *(x 1-x 2)+\operatorname{margin}) ln=max(0,−y∗(x1−x2)+margin)
若 x 1 x1 x1, x 2 x2 x2排序正确且 − y ∗ ( x 1 − x 2 ) > margin -y *(x 1-x 2)>\operatorname{margin} −y∗(x1−x2)>margin, 则loss为0
class MarginRankingLoss(_Loss):
__constants__ = ['margin', 'reduction']
def __init__(self, margin=0., size_average=None, reduce=None, reduction='mean'):
super(MarginRankingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input1, input2, target):
return F.margin_ranking_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
pytorch中通过torch.nn.MarginRankingLoss
类实现,也可以直接调用F.margin_ranking_loss
函数,代码中的size_average
与reduce
已经弃用。reduction有三种取值mean
, sum
, none
,对应不同的返回
ℓ
(
x
,
y
)
\ell(x, y)
ℓ(x,y)。 默认为mean
,对应于上述
l
o
s
s
loss
loss的计算
L = { l 1 , … , l N } L=\left\{l_{1}, \ldots, l_{N}\right\} L={l1,…,lN}
ℓ
(
x
,
y
)
=
{
L
,
if reduction
=
’none’
1
N
∑
i
=
1
N
l
i
,
if reduction
=
’mean’
∑
i
=
1
N
l
i
if reduction
=
’sum’
\ell(x, y)=\left\{
m a r g i n margin margin默认取值0
例子:
import torch import torch.nn.functional as F import torch.nn as nn import math def validate_MarginRankingLoss(input1, input2, target, margin): val = 0 for x1, x2, y in zip(input1, input2, target): loss_val = max(0, -y * (x1 - x2) + margin) val += loss_val return val / input1.nelement() torch.manual_seed(10) margin = 0 loss = nn.MarginRankingLoss() input1 = torch.randn([3], requires_grad=True) input2 = torch.randn([3], requires_grad=True) target = torch.tensor([1, -1, -1]) print(target) output = loss(input1, input2, target) print(output.item()) output = validate_MarginRankingLoss(input1, input2, target, margin) print(output.item()) loss = nn.MarginRankingLoss(reduction="none") output = loss(input1, input2, target) print(output)
输出:
tensor([ 1, -1, -1])
0.015400052070617676
0.015400052070617676
tensor([0.0000, 0.0000, 0.0462], grad_fn=<ClampMinBackward>)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。