当前位置:   article > 正文

人机混合智能在博弈领域的发展

人工智能人机博弈

【编者按:博弈向来是人机环境系统的智能,而不仅仅是人的智能,或许,西方的博弈论里存在着很大的缺陷】

-----------------------------------

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。

博弈论已经成为经济学的标准分析工具之一。在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。其中局中人、策略和收益是最基本要素。局中人、行动和结果被统称为博弈规则。

-------------------------------------

军事智能化将在战场上发挥越来越重要的作用。不仅要求对战争和军事拥有足够认识,同时需要提升对智能的认识,深刻理解智能在军事应用中的优势和局限性,进而在军事方面实现人和人工智能的有效协作。这涉及到众多领域的探索研究和协调配合,是一个重要的人-机-环境系统工程。

1 美作战概念与军事智能发展态势

从上世纪80年代以来,美国国防部、陆军、海军、空军等单位陆续提出了一系列作战概念。例如从20世纪80-90年代的“空地一体战”,“非对称作战”,“有人/无人协同作战”,“网络中心站”等,到21世纪00年代的“认知电子站”“电磁频谱站”等,再到21世纪10年代的“全球一体化作战”“多域战”“马赛克站”等作战概念。

在军事领域中,机械化主要通过增强武器的机动力、火力和防护力提升单件武器的战斗力,以武器代际更新和扩大数量规模的方式提升整体战斗力[1]。信息化主要是通过构建信息化作战体系,以信息流驱动物质流和能量流,实现信息赋能、网络聚能、体系增能,以软件版本升级和系统涌现的方式提升整体战斗力。智能化则是在高度信息化基础上,通过人工智能赋予作战体系“学习”和“思考”能力,以快速迭代进化的方式提升整体战斗力。

从美作战概念的演化中,可以看出作战的机械化早已成熟,信息化程度越来越高,智能化也在不断推进。不仅覆盖的范围越来越广,对多域范围内的统一沟通协作要求也越来越高。智能化的重要前提是信息化,依托的物质基础主要是高度信息化以后提供的海量数据资源。随着近几十年美国相关作战概念的提出与普及,其智能化的基础也越来越坚实,同时人工智能的技术也在社会各方面的重视中飞速发展。

另一方面,美国在引导国家在人工智能发展方面发布了一系列战略规划书的同时,积极引导军事领域与人工智能进行深度融合,发展军事智能。例如,2016年10月,美国国家科技委员会连续发布了《为人工智能的未来做好准备》和《国家人工智能研究与发展战略规划》,战略文件。2017年初,美国公布的《2016—2045年新兴科技趋势报告》以明确了最值得关注的科技技术,其中就包括云计算、人工智能、量子计算等。

综上所述,我们可以看出,美国作为人工智能和军事方面的强国,对人工智能的未来发展以及与军事的融合充满了信心,并且努力想要维护自身的领先地位。在了解其军事智能发展态势之后,我们更清晰的看到军事智能发展的重要性。

2 人工智能分析与思考

无论是“军事智能”还是其它智能,我们首先需要对“智能”和“人工智能”有深刻的认识。“智能”概念中暗含着个体、有限对整体、对无限的关系。针对智能时代的到来,有人提出,“需要从完全不同的角度来考虑和认识自古以来就存在的行为时空原则”,如传统的人、物、环境关系等。

2.1 “模型”的有效性决定智能水平

世界是多元而复杂的,这其中包括了对象的多样和复杂,以及不同对象之间关系的多样与复杂。智能,可以对或多或少的这些对象和关系产生认识和建模。对于同样的对象或现象,不同的人可以对其建立起不同的模型,同一个人也可以对其建立不同的模型。例如在地球上认识到的“昼夜”和“春夏秋冬”,而在太阳系中去观察其实是“公转”“自转”等运动学规律。很多时候不同的视角,也就是用不同的模型去进行解释的行为。军事环境下,由于关乎生命和国家安全,我们对这些智能模型的可靠性和可解释性要求比起民用领域显然更高。

在人类的认识中,会出现“悖论”或者“矛盾”这样的现象。其中“悖论”的一个特征是会对模型赋予导致无解的约束,并且约束往往是简单的。对同一个事情的不同解释出现“矛盾”则是由这些解释模型的多样性和差异性所产生的。前面我们讨论到人类智能在环境中必然存在局限性,而这些必然的局限性导致了所产生的模型也总是存在着或多或少的局限性,一定具有边界并且通常不是必然有效的。所以会出现面对同样的问题,各种具有不同边界和效果的“模型”相互竞争的情况,这种竞争既出现在个体中,也出现在群体中。在个体中,往往体现为“纠结”“沉思”“艰难的选择”等等。在群体中,小范围内可能是“辩论”,大范围可能是不同理论或者共识的竞争与传播。

机器学习中也有集成学习的思想,方法是把多个估计器的预测结果结合起来,从而获得比单个估计器更好的泛化能力/鲁棒性。但是机器学习中集成的多个估计器往往是同样或类似的结构或模型,如果是模型本身不利于去表示这些数据的信息,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/406052
推荐阅读
相关标签
  

闽ICP备14008679号