赞
踩
目录
炸裂函数(一行变多行)本质属于UDTF函数(接收一行数据,输出一行或者多行数据)。
- (1)explode(array<T> a) --> explode针对数组进行炸裂
- 语法:lateral view explode(split(a,',')) tmp as new_column
- 返回值:string
- 说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串
- 举例:select student_score from test lateral view explode(split(student_score,',')) tmp as item; 输出结果为:
- student_score item
- [a,b,c] => a
- b
- c
-
- (2)explode(map<k,v> m) --> explode针对map键值对进行炸裂
- 举例:select explode(map('a',1,'b',2,'c',3)) as (key,value); 输出结果为:
- 得到 key value
- {a:1,b:2,c:3} => a 1
- b 2
- c 3
- posexplode和explode之间的区别:posexplode除了返回数据,还会返回该值的下角标。
-
- (1)posexplode(array<T> a)
- 语法:lateral view posexploed(split(a,',')) tmp as pos,item
- 返回值:string
- 说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串(炸裂具备下角标 0,1,2,3)
- 举例1:select posexplode (array('a','b','c')) as pos,item; 输出结果为:
- pos item
- [a,b,c] => 0 a
- 1 b
- 2 c
- ---------------------------------
- 举例2:对student_name进行炸裂,同时也对student_score进行炸裂,且需要保证炸裂后,学生和成绩一一对应,不能错乱。
- lateral view posexplode(split(student_name,',')) tmp1 as student_name_index,student_name
- lateral view posexplode(split(student_score,',')) tmp2 as student_score_index,student_score
- where student_name_index = student_score_index;
官网链接:LanguageManual LateralView - Apache Hive - Apache Software Foundation
根据学生成绩表,计算学生的成绩。
- create table if not exists table10
- (
- class string comment '班级名称',
- student string comment '学生名称',
- score string comment '学生分数'
- )
- comment '学生成绩表';
- INSERT overwrite table table10
- VALUES ("1班","小A,小B,小C","80,92,70"),
- ("2班","小D,小E","88,62"),
- ("3班","小F,小G,小H","90,97,85");
思路一:lateral view + explode
-
- select
- class,
- student,
- score,
- student_name,
- student_score
- from table10 lateral view explode(split(student, ',')) tmp1 as student_name
- lateral view explode(split(score, ',')) tmp2 as student_score;
bug:上面逻辑能跑通,但是学生姓名和学生成绩对应不上,出现错乱,弃用。
正确的代码如下:
思路二: lateral view + posexplode
-
- select
- class,
- student,
- score,
- student_name,
- student_score
- from table10 lateral view posexplode(split(student, ',')) tmp3 as student_index_st, student_name
- lateral view posexplode(split(score, ',')) tmp4 as student_index_sc, student_score
- where student_index_st = student_index_sc;
-
说明:student_index_st = student_index_sc 的作用:下角标对齐,实现学生和成绩一一对应
上述案例的学生成绩表中,【学生姓名】字段和【学生成绩】都是数组类型的字符串,我们需要对两个字段分别炸裂后,实现每个学生与其成绩一一对应,因此需要借助posexlode函数的pos下角标进行约束。(用explode函数无法实现)
统计每个品牌的总营销天数(营销日期有重叠的地方需要去重)
- create table promotion_info
- (
- promotion_id string comment '优惠活动id',
- brand string comment '优惠品牌',
- start_date string comment '优惠活动开始日期',
- end_date string comment '优惠活动结束日期'
- ) comment '各品牌活动周期表';
-
- insert overwrite table promotion_info
- values (1, 'oppo', '2021-06-05', '2021-06-09'),
- (2, 'oppo', '2021-06-11', '2021-06-21'),
- (3, 'vivo', '2021-06-05', '2021-06-15'),
- (4, 'vivo', '2021-06-09', '2021-06-21'),
- (5, 'redmi', '2021-06-05', '2021-06-21'),
- (6, 'redmi', '2021-06-09', '2021-06-15'),
- (7, 'redmi', '2021-06-17', '2021-06-26'),
- (8, 'huawei', '2021-06-05', '2021-06-26'),
- (9, 'huawei', '2021-06-09', '2021-06-15'),
- (10, 'huawei', '2021-06-17', '2021-06-21');
思路一:用带有下标的炸裂函数posexplode将活动区间炸裂成具体的每一天的日期。即:将同一个品牌的所有活动日期都有列出来,再对重叠的日期进行统一去重
-
- select brand,
- count(distinct event_date)
- from
- (
- select
- promotion_id,
- brand,
- start_date,
- -- 用 start_date + 下角标pos
- date_add(start_date,pos) as event_date,
- pos
- from (
- select
- promotion_id,
- brand,
- start_date,
- end_date,
- split(space(datediff(end_date, start_date)), '') as ar
- from promotion_info
- ) tmp1
- lateral view posexplode(ar) tmp2 as pos, item
- )tmp2
- group by brand;
思路一的代码拆解分析:
- 以一条数据为例,
- promotion_id brand start_date end_date
- 1 'oppo' '2021-06-05' '2021-06-09'
- (1) split(space(datediff(end_date, start_date)), '') as diff 的结果:
- 根据[9-5]=4,利用space函数生成长度是4的空格字符串,再利用split函数切割
- 1 (promotion_id) , 'oppo'(brand) , '2021-06-05'(start_date) ,'2021-06-09'(end_date)
- , diff ["","","","",""]
-
- (2)用posexplode经过转换增加行(列转行,炸裂),通过下角标pos来获取 event_date,
- 根据数组["","","","",""],得到pos的取值是0,1,2,3,4
- 炸裂得出下面五行数据(一行变五行)
- 1,oppo,2021-06-05(start_date),2021-06-05= date_add(2021-06-05,0) (event_date= start_date+pos)
- 1,oppo,2021-06-05(start_date),2021-06-06= date_add(2021-06-05,1) (event_date= start_date+pos)
- 1,oppo,2021-06-05(start_date),2021-06-07 = date_add(2021-06-05,2) (event_date= start_date+pos)
- 1,oppo,2021-06-05(start_date),2021-06-07 = date_add(2021-06-05,3) (event_date= start_date+pos)
- 1,oppo,2021-06-05(start_date),2021-06-08 = date_add(2021-06-05,4) (event_date= start_date+pos)
- 1,oppo,2021-06-05(start_date),2021-06-09 = date_add(2021-06-05,5) (event_date= start_date+pos)
-
- 炸裂的目的:活动的优惠时间段[ '2021-06-05' , '2021-06-09' ] 拆分成具体的每一天event_date: '2021-06-05','2021-06-06','2021-06-07','2021-06-08','2021-06-09'
- (3)根据品牌brand进行分组,求count(distinct event_date) ,从而得到每品牌的总营销天数(营销日期有重叠的地方已经去重了)
思路二:用带有下标的炸裂函数posexplode
-
- select brand,
- count(distinct event_date)
- from
- (
- select
- promotion_id,
- brand,
- start_date,
- date_add(start_date,pos) as event_date,
- pos
- from (
- select
- promotion_id,
- brand,
- start_date,
- end_date,
- split(repeat(',',datediff(end_date, start_date)),',') as ar
- from promotion_info
- ) tmp1
- lateral view posexplode(ar) tmp2 as pos, item
- )tmp2
- group by brand;
思路二的代码拆解分析:跟思路一的逻辑基本是一样的 ,区别仅在于:用代码 split(repeat(',',datediff(end_date, start_date)),',') as ar 去替换 split(space(datediff(end_date, start_date)), '') as ar
思路三的代码逻辑如下:
-
- select
- brand,
- --对品牌brand分组求sum的原因:同一个用户可能对应多段不交叉的活动
- sum(datediff(end_date, new_start_date) + 1) days
- from (
- select
- brand,
- new_start_date,
- end_date
- from (
- select
- brand,
- --判断逻辑:1.如果max_end_date是null(意味着当前行就是首行,不存在上一行了),直接取start_date
- --2.如果max_end_date不是null,进一步判断【当前行】的start_date与max_end_date的大小,如果start_date小,那用max_date+ 1的值作为【当前行】的新new_start_date
- if(max_end_date is null, start_date,
- if(start_date > max_end_date, start_date, date_add(max_end_date, 1))) new_start_date,
- end_date
- from (
- select
- brand,
- start_date,
- end_date,
- -- 开窗范围:同一个品牌内部:上无边界到截止到上一行
- -- 开窗的计算逻辑:max(end_date) --> 对【上无边界到上一行】的最大结束时间end_date进行标记,再与当前行的起始时间start_date进行比对
- max(end_date)
- over (partition by brand order by start_date rows between unbounded preceding and 1 preceding) max_end_date
- from promotion_info
- ) t1
- ) t2
- -- 需要保证每行数据的新的起始时间new_start_date 比 结束时间end_date 小
- where new_start_date < end_date
- ) t3
- group by brand;
思路三:没有用到炸裂函数,关键思想是:当活动的上一个日期区间A 与 当前的日期区间B出现重叠(日期交叉,有重复数据)时,需要将区间B的起始时间改成区间A的结束时间。(修改之后需要保证B区间的结束时间> 开始时间)
上述代码中用到的函数有:
- 一、字符串函数
- 1、空格字符串函数:space
- 语法:space(int n)
- 返回值:string
- 说明:返回值是n的空格字符串
- 举例:select length (space(10)) --> 10
- 一般space函数和split函数结合使用:select split(space(3),''); --> ["","","",""]
-
-
- 2、split函数(分割字符串)
- 语法:split(string str,string pat)
- 返回值:array
- 说明:按照pat字符串分割str,会返回分割后的字符串数组
- 举例:select split ('abcdf','c') from test; -> ["ab","df"]
-
- 3、repeat:重复字符串
- 语法:repeat(string A, int n)
- 返回值:string
- 说明:将字符串A重复n遍。
- 举例:select repeat('123', 3); -> 123123123
- 一般repeat函数和split函数结合使用:select split(repeat(',',4),','); -->
- ["","","","",""]
-
-
- 二、炸裂函数
- explode
- 语法:lateral view explode(split(a,',')) tmp as new_column
- 返回值:string
- 说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串
- 举例:select student_score from test lateral view explode(split(student_score,','))
- tmp as student_score
-
- posexplode
- 语法:lateral view posexploed(split(a,',')) tmp as pos,item
- 返回值:string
- 说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串(炸裂具备瞎下角标 0,1,2,3)
- 举例:select student_name, student_score from test
- lateral view posexplode(split(student_name,',')) tmp1 as student_name_index,student_name
- lateral view posexplode(split(student_score,',')) tmp2 as student_score_index,student_score
- where student_score_index = student_name_index
-
变更需求:table11表的第1,4列不表,第2列需要变更为连续日期,第3列需要变更成当日累积消费额
- create table if not exists table11
- (
- user_id string comment '用户标识',
- dt string comment '消费日期',
- price string comment '消费金额',
- qs int comment '用户应存期数'
- )
- comment '用户消费详情表';
- INSERT overwrite table table11
- VALUES ("A","2018-12-21","9439.30",12),
- ("A","2019-03-21","9439.30",12),
- ("A","2019-06-21","9439.30",12),
- ("A","2019-09-21","9439.30",12),
- ("B","2018-12-02","9439.30",10),
- ("B","2019-02-02","9439.30",10),
- ("B","2019-06-02","9439.30",10);
- -- 思路一:利用posexplode函数进行炸裂,同时生成下角标pos,
- --将消费区间(一行)炸裂成对应的每天的消费日期(多行)
- select
- tmp3.user_id,
- tmp3.event_dt,
- -- sum() over(partition by .. order by .. ) 窗口计算的范围是:上无边界(起始行)到当前行,求消费金额的累积值(order by 后面没有窗口子句的情况下,窗口范围是:上无边界(起始行)到当前行)
- cast(sum(tmp4.price) over (partition by tmp3.user_id order by tmp3.event_dt) as decimal(18, 2)) as price,
- tmp3.max_qs
- from (
- select
- user_id,
- add_months(min_dt, pos) as event_dt,
- max_qs,
- pos
- from (
- select
- user_id,
- min(dt ) as min_dt,
- max(price) max_price,
- max(qs) max_qs
- from table11
- group by user_id
- ) tmp1 lateral view posexplode(split(space(max_qs), '')) tmp2 as pos, item
- ) tmp3
- left join (select
- user_id,
- ds,
- price
- from table11) tmp4
- on tmp3.user_id = tmp4.user_id and tmp3.new_ds = tmp4.ds;
利用posexplode的下角标pos进行填补连续。利用sum(price)over(partition by ..order by)进行消费金额的累积值统计(截止到当日)
(1)lateral view posexplode(split(space(max_qs), '')) tmp2 as pos, item;-->对字段 期数ds进行posexplode炸裂,一行变多行,且生成对应的下角标pos
(2)add_months(min_ds, pos) as new_ds; --> 基于min_dt + pos对消费日期 进行填补,组成连续的消费日期区间。
待补充:炸裂的弊端是可能会发生数据膨胀,当数据集小的时候,用炸裂方便,当时数据集大时,需慎用。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。