赞
踩
栈是限定仅在表位进行插入或删除操作的线性表。栈的表尾称为栈顶,表头称为栈底。不含元素的栈称为空栈。
左图为栈的示意图,右图为用铁路调度表示栈。
如下是入栈至栈满再进行出栈的过程示意图。值得注意的是,栈满后,top指针指向的不是顶端元素,而是顶端的下一个位置。
在正式开始前,照例需要定义一些如下的常量
- #define STACK_INIT_SIZE 100//存储空间初始分配量
- #define STACKINCREMENT 10//存储空间分配增量
- #define TRUE 1
- #define ERROR 0
- #define OVERFLOW -2
- typedef char SElemType;
- tyoedef int Status;
- typedef struct{
- SElemType *base;//栈底指针.在栈构造之前和销毁之后,base的值为NULL
- SElemType *top;//栈顶指针
- int stacksize;//当前已分配的存储空间,初始值一般为STACK_INIT_SIZE,不够时再以STACKINCREMENT为单位扩大
- }SqStack;
在顺序栈中,base指针始终指向栈底元素,栈不存在的条件为base=NULL。top指针初值指向栈底,栈空的条件为base==top。栈不空时,top指向(栈顶+1)。也就是说,在正常情况下,S.top 是不指向任何元素的。(top-base)的值即为栈中元素的个数,也即栈的长度。当top-base==stacksize时,说明栈满。此时若想进行入栈操作,需要扩充分配存储空间。
- Status StackEmpty(SqStack S)
- {
- if(!S.base) return TRUE;
- else return FALSE;
- }
- Status InitStack(SqStack &S)
- {
- S.base=(SElemType*)malloc(STACK_INIT_SIZE*sizeof(SElemType));
- if(!S.base) exit(OVERFLOW);
- S.top=S.base;
- S.stacksize=STACK_INIT_SIZE;
- return OK;
- }
若栈不存在,分配空间时发生上溢出错误而退出。
在入栈、出栈、取栈顶元素的函数中,不存在分配空间的问题,是return ERROR而不是 exit(OVERFLOW)
- Status Push(SqStack& S, SEIemType e)//入栈
- {
- if (S.top - S.base >= S.stacksize) return ERROR;
- *S.top = e;//注意S.top是指针型变量
- S.top++;//先赋值,再加一
- return OK;
- }
- Status (SqStack &S)
- {
- if(S.top==S.base) return ERROR;
- S.top--;
- e=*(S.top);
- return OK;
- }
值得注意的是,出栈后,元素e并未从栈中删除。改变的只是top指针的位置。虽然e还在栈中,但栈长已经改变,e的原位置此后可以被其它值覆盖。
取栈顶元素就是“top指针位置不变”版的“出栈”。博主初学时没意识到这一点,以为出栈就是删除元素,所以构造了一个很复杂的取栈顶元素函数。为避免误导,就不放在这里了。
- Status(SqStack S,SElemType)
- {
- if(S.top==S.base) return ERROR;
- e=*(S.top-1);//top指针位置不变
- return OK;
- }
和取栈顶元素同理,在不移动指针位置的情况下输出元素。若采用for循环,需要先求栈长。一般使用while循环。
- Status PrintStack(SqStack S)
- {
- int i=0;
- SElemType *s;
- s=S.base;//注意!顺序栈从底部开始向上存储,顺序输出是从S.base开始
- //并且,如果想做逆序输出,while循环条件应为s!=S.base-1
- while(s!=S.top)
- {
- printf("%c\n",*s);
- s++;
- i++;
- }
- printf("已输出栈中%d个元素",i);
- return OK;
- }
- Status PrintStack(SqStack S)
- {
- int a=S.top-S.base;
- if(S.base==S.top) return ERROR;
- int i;
- for(i=1;i<=a;i++)
- printf("%c\n",*(S.top-a));
- printf("已输出栈中%d个元素",a);
- return OK;
- }
由键盘输入一系列左括号和右括号,判断这些括号是否成功配对。一旦发现不配对的括号,立刻退出程序并说明原因。如:( { [ ] [ ] } )是匹配成功,而((]是由于括号不匹配而失败,{ ( [ ] )是因为左括号多余而失败,( { } ) ]是因为右括号多余而失败。
- Status March_Brackets(SqStack& S)
- {
- char ch;//输入一连串字符(括号),以回车结束.起初,括号都存储在ch中,栈S为空栈.
- SElemType* s;
- s = S.top-1;//s指向栈顶元素
- printf("请输入字符:\n");
- ch = getchar();//输入括号,进入循环
- while (ch != '\n')//循环接收括号字符以回车为结束符,每输入一个括号,就进行一次判断。
- {
- if (ch =='(' || ch == '[' || ch == '{') //如果ch是左括号,入栈.栈中存放左括号,有匹配的右括号就出栈.若全部匹配成功,栈空。
- Push(S, ch); //入栈
- if (ch == ')')//输入字符为右括号
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- /*在Pop函数中, 若返回值为0, 说明是空栈.这有两种情况:1,还未输入左括号,第一个输入的就是右括号;
- 2,之前输入的左、右括号都已成功匹配,左括号已全部出栈*/
- else if (*s != '(') { printf("右括号与左括号不匹配\n"); return ERROR; }
- /*最后输入的左括号不是小括号,与输入的右小括号不匹配*/
- }
- else if (ch == ']')
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- else if (*s != '[') { printf("右括号与左括号不匹配\n"); return ERROR; }
- }
- else if (ch == '}')
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- else if (*s != '{') { printf("右括号与左括号不匹配\n"); return ERROR; }
- }
- ch = getchar();
- }//循环结束,说明输入的右括号都有预支品牌的左括号.但这不意味着匹配成功!!还有左括号多余的可能。
- if (S.top != S.base)//栈不空,说明有左括号未出栈,未匹配
- {
- printf("左括号多余,不匹配\n");
- return ERROR;
- }
- else//栈空,说明左括号已全部出栈,匹配成功
- {
- printf("匹配完整,成功退出\n");
- return OK;
- }
- }
经高手指点:由于getchar的一些特性,建议只执行一次括号判断函数。不要在主函数中反复执行它。
- #include <stdio.h>
- #include <stdlib.h>
- typedef char SElemType;
- typedef int Status;
- constexpr auto ERROR = 0;
- constexpr auto OK = 1;
- constexpr auto OVERFLOW = -2;
- constexpr auto STACK_MAX_SIZE = 100;
- typedef struct {
- SElemType* base;
- SElemType* top;
- int stacksize;
- }SqStack;
- Status InitStack(SqStack& S)//建立空顺序栈
- {
- S.stacksize = STACK_MAX_SIZE;
- S.base = (SElemType*)malloc(STACK_MAX_SIZE * sizeof(SElemType));
- if (!S.base) exit(OVERFLOW);
- S.top = S.base;
- return OK;
- }
- Status Push(SqStack& S, SElemType e)//入栈
- {
- if (S.top - S.base >= S.stacksize) exit(OVERFLOW);
- *S.top = e;//注意S.top是指针型变量
- S.top++;//先赋值,再加一
- return OK;
- }
- Status Pop(SqStack& S, SElemType& e)//出栈
- {
- if (S.base == S.top) return ERROR;
- S.top--;//注意S.top是指针型变量
- e = *S.top;//先减一,再赋值
- return OK;
- }
- Status GetTop(SqStack S, SElemType &e)//获取栈顶元素
- {
- if (S.top == S.base) return ERROR;
- e = *(S.top - 1);//top指针位置不变
- return OK;
- }
- Status PrintStack(SqStack S)//输出栈所有元素
- {
- if (S.top == S.base) return ERROR;
- int i = 0;
- SElemType* s;
- s = S.base;
- while (s != S.top)
- {
- printf("%c\n", *s);
- i++;
- s++;
- }
- printf("已输出栈中%d个元素", i);
- return OK;
-
- }
- Status March_Brackets(SqStack& S)
- {
- char ch;//输入一连串字符(括号),以回车结束.起初,括号都存储在ch中,栈S为空栈.
- SElemType* s;
- s = S.top-1;//s指向栈顶元素
- printf("请输入字符:\n");
- ch = getchar();//输入括号,进入循环
- while (ch != '\n')//循环接收括号字符以回车为结束符,每输入一个括号,就进行一次判断。
- {
- if (ch =='(' || ch == '[' || ch == '{') //如果ch是左括号,入栈.栈中存放左括号,有匹配的右括号就出栈.若全部匹配成功,栈空。
- Push(S, ch); //入栈
- if (ch == ')')//输入字符为右括号
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- /*在Pop函数中, 若返回值为0, 说明是空栈.这有两种情况:1,还未输入左括号,第一个输入的就是右括号;
- 2,之前输入的左、右括号都已成功匹配,左括号已全部出栈*/
- else if (*s != '(') { printf("右括号与左括号不匹配\n"); return ERROR; }
- /*最后输入的左括号不是小括号,与输入的右小括号不匹配*/
- }
- else if (ch == ']')
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- else if (*s != '[') { printf("右括号与左括号不匹配\n"); return ERROR; }
- }
- else if (ch == '}')
- {
- if ((Pop(S, *s) == 0)) { printf("右括号多余,不匹配\n"); return ERROR; }
- else if (*s != '{') { printf("右括号与左括号不匹配\n"); return ERROR; }
- }
- ch = getchar();
- }//循环结束,说明输入的右括号都有预支品牌的左括号.但这不意味着匹配成功!!还有左括号多余的可能。
- if (S.top != S.base)//栈不空,说明有左括号未出栈,未匹配
- {
- printf("左括号多余,不匹配\n");
- return ERROR;
- }
- else//栈空,说明左括号已全部出栈,匹配成功
- {
- printf("匹配完整,成功退出\n");
- return OK;
- }
- }
- int main(void)
- {
- SqStack S; int i;
- char e; char f; char k;
- InitStack(S);
- printf("请向栈中输入字符\n");
- for (i = 0; i < 7; i++)
- {
- scanf_s("%c", &e);
- Push(S, e);//入栈
- }
- printf("已初始化栈如下\n");
- PrintStack(S);
- GetTop(S, f);//获取栈顶元素
- printf("栈顶元素为\n");
- putchar(f);
- printf("删除栈顶元素\n");
- Pop(S, k);//出栈
- printf("更新栈如下\n");
- PrintStack(S);
-
- printf("下面进入括号匹配\n");
-
- SqStack B;
- InitStack(B);
- March_Brackets(B);
-
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。