当前位置:   article > 正文

YOLOV8模型使用-检测-物体追踪_yolo咖啡厅监测

yolo咖啡厅监测

这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。

有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭


简单介绍

YOLOv8 中可用的模型

YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。用来实际使用的时候选权重模型。

| YOLOv8n | YOLOv8s | YOLOv8m | YOLOv8l | YOLOv8x |

其他介绍,就不用管了,上手玩一下要紧。看一下几个官方介绍图片就懂了:

请添加图片描述
请添加图片描述

这里可以看到,有物体检测识别,检测,分类,轨迹,姿态的功能,下面就上手试试。


部署-简单使用【超简单】

前提安装好Python,版本需要Python>=3.8 我的是 Python 3.11.3

视频图片识别

  1. 首先,先下载官方的代码。官网代码

  2. 执行安装与检测:【执行位置是在项目目录下】

pip install -r requirements.txt
pip install ultralytics

# 执行这个,会自动下载模型
# Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'...
# source 替换成需要检测的本地图片即可
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

# 也可以如下对视频进行检测
yolo task=detect mode=predict model=yolov8n.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True

#实例分割
yolo task=segment  mode=predict model=yolov8n-seg.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  1. 看看这个检测出来的效果:
    请添加图片描述
    请添加图片描述请添加图片描述

  2. 是不是灰常的简单,[]( ̄▽ ̄)*

  3. 就酱紫,后面在试试其他功能。


视频流,摄像头识别

这个处理只需要把来源替换成0即可,就像这样

yolo task=detect mode=predict model=yolov8n.pt source=0 show=True
  • 1

视频追踪-绘制随时间变化的轨迹【这个有意思】

可以用于视频追踪的模型是:YOLOv8n, YOLOv8n-seg and YOLOv8n-pose 【以8n举例子】

yolo track model=yolov8n.pt source=0 show=True 
  • 1

这个追踪的效果就是,在识别里面多了一个ID表示固定的物体。

以下是官方代码改了一下,绘制随时间变化的轨迹

效果是这样的:
请添加图片描述

这个车流比较多感觉轨迹画的不怎么好看。

请添加图片描述

哈哈,这个卡车还识别错了 。。╮(╯▽╰)╭

不过这里可以绘制轨迹,就也可以统计这个ID物体在视频中存在的时间什么的。如果放在门店咖啡厅的摄像头里面,就可以看到顾客的停留时间。

这个轨迹变化绘制+物体追踪代码如下:

# 绘制随时间变化的轨迹
from collections import defaultdict

import cv2
import numpy as np

from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO('yolov8n.pt')

# Open the video file
# video_path = "C:\\Users\\Administrator\\Desktop\\1.ts" 
video_path = 0
cap = cv2.VideoCapture(video_path)

# Store the track history
track_history = defaultdict(lambda: [])

# 用于保存图像
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out_cat = cv2.VideoWriter("C:\\Users\\Administrator\\Desktop\\save.mp4", fourcc, 24, (352, 288), True)  # 保存位置/格式

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 tracking on the frame, persisting tracks between frames
        results = model.track(frame, persist=True)

        # Get the boxes and track IDs
        boxes = results[0].boxes.xywh.cpu()
        if results[0].boxes.id is not None:
            track_ids = results[0].boxes.id.int().cpu().tolist()

        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Plot the tracks
        if results[0].boxes.id is not None:
            for box, track_id in zip(boxes, track_ids):
                x, y, w, h = box
                track = track_history[track_id]
                track.append((float(x), float(y)))  # x, y center point
                if len(track) > 30:  # retain 90 tracks for 90 frames
                    track.pop(0)

                # Draw the tracking lines
                points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
                cv2.polylines(annotated_frame, [points], isClosed=False, color=(track_id*10%255, 100, 255), thickness=2)

        # Display the annotated frame
        cv2.imshow("YOLOv8 Tracking", annotated_frame)


        # out_cat.write(annotated_frame)  # 保存视频

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69

参考资料

  • V8官方开源地址:ultralytics :https://github.com/ultralytics/ultralytics
  • MMYOLO 开源地址:https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov8
  • https://zhuanlan.zhihu.com/p/633779645?utm_id=0
  • https://blog.csdn.net/caobin_cumt/article/details/131009067
  • 关键的资料:https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/584915
推荐阅读
相关标签
  

闽ICP备14008679号