赞
踩
代码如下:
#!/usr/bin/python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(64) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) writer = tf.train.SummaryWriter("logs/",sess.graph) writer.close() correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy =
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。