当前位置:   article > 正文

双指针算法(c++)

双指针算法(c++)

基本思想

**双指针的两种形式**
将for(int i = 0; i < n; i++)
for(j = 0; j <n; j++)
时间复杂度O(n^2)优化到O(n)

基本模板来自yxc

for (int i = 0, j = 0; i < n; i ++ )
{
    while (j < i && check(i, j)) j ++ ;

    // 具体问题的逻辑
}
//常见问题分类:
    (1) 对于一个序列,用两个指针维护一段区间
    (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

经典例题

AcWING 799. 最长连续不重复子序列
给定一个长度为n的整数序列,请找出最长的不包含重复数字的连续区间,输出它的长度。

输入格式
第一行包含整数n。

第二行包含n个整数(均在0~100000范围内),表示整数序列。

输出格式
共一行,包含一个整数,表示最长的不包含重复数字的连续子序列的长度。

数据范围
1≤n≤100000
输入样例:

5
1 2 2 3 5
  • 1
  • 2

输出样例:

3
  • 1

解答
目的:找出最长的不包含重复数字的连续区间,输出它的长度


i不断向右移动的同时,判断[j,i]区间是否有重复元素,若有则将j向右移动,并且要减去a[j] 的个数; 否则j 的位置不变

#include <iostream>
using namespace std;
const int N = 100010;

int n;
int a[N], s[N];//s[N] 用来记录每个数出现多少次
int main()
{
    cin >> n;
    for(int i = 0; i < n; i++) cin >> a[i];
    
    int res = 0;//最后连续不重复序列个数
    for(int i = 0, j = 0; i < n; i++)
    {
        s[a[i]]++;//计算a[i]个数
        while(s[a[i]] > 1)
        {
            s[a[j]] -- ;//剔除a[i] 重复时 a[j] 的数量
            j++;
        }
        res = max(res, i - j + 1);//比较找出的连续不重复数列的长度,找出最长的为最后的结果
    }
    cout << res << endl;
    
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

AcWing 800. 数组元素的目标和
给定两个升序排序的有序数组A和B,以及一个目标值x。数组下标从0开始。
请你求出满足A[i] + B[j] = x的数对(i, j)。

数据保证有唯一解。

输入格式
第一行包含三个整数n,m,x,分别表示A的长度,B的长度以及目标值x。

第二行包含n个整数,表示数组A。

第三行包含m个整数,表示数组B。

输出格式
共一行,包含两个整数 i 和 j。

数据范围
数组长度不超过100000。
同一数组内元素各不相同。
1≤数组元素≤109
输入样例:

4 5 6
1 2 4 7
3 4 6 8 9
  • 1
  • 2
  • 3

输出样例:

1 1
  • 1

解答
i在第一个数组中的最左端向右移,j在第二个数组的最右端向左移动,在保证j >= 0 并且a[i] + b[j] > x 时,j 向左移动,当a[i] + b[i] == x 时满足条件输出(i, j)

在这里插入图片描述

#include <iostream>

using namespace std;

const int N = 1e5 + 10;

int n, m, x;
int a[N], b[N];

int main()
{
    scanf("%d%d%d", &n, &m, &x);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
    for (int i = 0; i < m; i ++ ) scanf("%d", &b[i]);

    for (int i = 0, j = m - 1; i < n; i ++ )
    {
        while (j >= 0 && a[i] + b[j] > x) j -- ;//保证j >= 0 并且a[i] + b[j] > x 时,j 向左移动
        if (j >= 0 && a[i] + b[j] == x) cout << i << ' ' << j << endl;
    }

    return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

AcWing 2816. 判断子序列
给定一个长度为 n 的整数序列 a1,a2,…,an 以及一个长度为 m 的整数序列 b1,b2,…,bm。

请你判断 a 序列是否为 b 序列的子序列。

子序列指序列的一部分项按原有次序排列而得的序列,例如序列 {a1,a3,a5} 是序列 {a1,a2,a3,a4,a5} 的一个子序列。

输入格式
第一行包含两个整数 n,m。

第二行包含 n 个整数,表示 a1,a2,…,an。

第三行包含 m 个整数,表示 b1,b2,…,bm。

输出格式
如果 a 序列是 b 序列的子序列,输出一行 Yes。

否则,输出 No。

数据范围
1≤n≤m≤105,
−109≤ai,bi≤109
输入样例:

3 5
1 3 5
1 2 3 4 5
  • 1
  • 2
  • 3

输出样例:

Yes
  • 1
  1. i指针用来扫描整个b数组,j指针用来扫描a数组。若发现a[j]==b[i],则让j指针后移一位。
  2. 整个过程中,i指针不断后移,而j指针只有当匹配成功时才后移一位,若最后j==n,则说明匹配成功。

在这里插入图片描述

整个过程中i指针不断扫描b数组并且向后移动,相当于不断给j指针所指向的a数组创建匹配的机会,只有匹配成功时j指针才会向后移动一位,当j==n时,说明全部匹配成功。

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e5+10;
int a[N],b[N];
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i = 0;i < n; i++) scanf("%d",&a[i]);
    for(int j = 0;j < m; j++) scanf("%d",&b[j]);

    int j = 0;
    for(int i = 0;i < m; i++)
    {
        if(j < n&&a[j] == b[i])  j++;
    }
    if(j == n) puts("Yes");
    else puts("No");
    return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/628799
推荐阅读
相关标签
  

闽ICP备14008679号