当前位置:   article > 正文

【python深度学习】——torch.min()

【python深度学习】——torch.min()

1. torch.min()

torch.min()接受的参数如下:

  • input: 输入的张量。
  • dim: 沿指定维度寻找最小值。如果指定了该参数,返回一个元组,其中第一个张量包含最小值,第二个张量包含最小值的索引。
  • keepdim: (可选)是否保持输出张量的维度。如果设置为 True,输出张量在被计算的维度上仍然会有长度为1的维度。
  • out: (可选)输出张量,可以用来存储计算结果。

1.1 计算整个张量的最小值

不指定维度时, torch.min() 输出整个张量中所有元素的最小值

import torch
# 创建一个张量
x = torch.tensor([1, 2, 3, 4, 5])
# 计算最小值
min_value = torch.min(x)
print(min_value) # output: tensor(1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

1.2 沿特定维度计算最小值

当指定 dim 参数时,torch.min() 会返回沿指定维度的最小值以及对应的索引。

import torch

# 创建一个 2D 张量
x = torch.tensor([[1, 2, 3],
                  [4, 0, 6]])

# 沿每列计算最小值
min_values, min_indices = torch.min(x, dim=0)
print("Min values along columns:", min_values)
print("Indices of min values along columns:", min_indices)

# 沿每行计算最小值
min_values, min_indices = torch.min(x, dim=1)
print("Min values along rows:", min_values)
print("Indices of min values along rows:", min_indices)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

输出的结果为:

Min values along columns: tensor([1, 0, 3])
Indices of min values along columns: tensor([0, 1, 0])

Min values along rows: tensor([1, 0])
Indices of min values along rows: tensor([0, 1])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

1.3 比较两个张量

当传入两个张量时,torch.min() 会比较两个张量中的每个位置的元素,并返回对应位置的最小值。
例如:

import torch

# 创建两个张量
a = torch.tensor([1, 2, 3])
b = torch.tensor([3, 1, 2])

# 比较两个张量并返回最小值
min_values = torch.min(a, b)
print(min_values) # output: tensor([1, 1, 2])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/670760
推荐阅读
相关标签
  

闽ICP备14008679号