当前位置:   article > 正文

ARM(IMX6U)裸机C语言版本LED驱动实验(汇编进入处理器SVC模式、SP堆内存、跳转main函数、链接起始地址)_arm svc模式

arm svc模式

参考:Linux之ARM(IMX6U)裸机C语言LED驱动实验–驱动编写,编译
作者:一只青木呀
发布时间: 2020-08-11 11:20:17
网址:https://blog.csdn.net/weixin_45309916/article/details/107930284

0.简介

前面讲解了如何使用汇编来编写LED 灯驱动,实际工作中是很少用到汇编去写嵌入式驱动的,毕竟汇编太难,而且写出来也不好理解,大部分情况下都是使用C 语言去编写的。

在开始部分用汇编来初始化一下 C 语言环境,比如初始化 DDR、设置堆栈指针 SP 等等,当这些工作都做完以后就可以进入 C 语言环境,也就是运行 C 语言代码,一般都是进入 main 函数。所以我们有两部分文件要做:

①、汇编文件

汇编文件只是用来完成 C 语言环境搭建。

②、C 语言文件

C 语言文件就是完成我们的业务层代码的,其实就是我们实际例程要完成的功能

C 语言文件就是完成我们的业务层代码的,其实就是我们实际例程要完成的功能。
其实STM32 也是这样的,只是我们在开发STM32 的时候没有想到这一点,以STM32F103 为例,其启动文件startup_stm32f10x_hd.s 这个汇编文件就是完成C 语言环境搭建的,当然还有一些其他的处理,比如中断向量表等等。当startup_stm32f10x_hd.s 把C 语言环境初始化完成以后就会进入C 语言环境。

STM32启动汇编文件

在STM32 中,启动文件startup_stm32f10x_hd.s 就是完成C 语言环境搭建的,当然还有一些其他的处理,比如中断向量表等等。startup_stm32f10x_hd.s 中堆栈初始化代码如下所示:

1 Stack_Size 	EQU 		0x00000400
2
3 				AREA 		STACK, NOINIT, READWRITE, ALIGN=3
4 Stack_Mem 	SPACE Stack_Size
5 __initial_sp
6
7 ; <h> Heap Configuration
8 ; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
9 ; </h>
10
11 Heap_Size 	EQU 		0x00000200
12
13 				AREA 		HEAP, NOINIT, READWRITE, ALIGN=3
14 __heap_base
15 Heap_Mem 	SPACE 		Heap_Size
16 __heap_limit
17 *******************省略掉部分代码***********************
18 Reset_Handler 	  PROC
19 					EXPORT 	Reset_Handler 		[WEAK]
20 					IMPORT 	__main
21 					IMPORT 	SystemInit
22 					LDR 	R0, =SystemInit
23 					BLX 	R0
24 					LDR 	R0, =__main
25 					BX 		R0
26 					ENDP
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

第1 行代码就是设置栈大小,这里是设置为0X400=1024 字节。
第5 行的__initial_sp 就是初始化SP 指针。
第11 行是设置堆大小。
第18 行是复位中断服务函数,STM32 复位完成以后会执行此中断服务函数。
第22 行调用SystemInit()函数来完成其他初始化工作。
第24 行调用__main,__main 是库函数,其会调用main()函数。

I.MX6U 的汇编部分代码和STM32 的启动文件startup_stm32f10x_hd.s 基本类似的,只是本实验我们不考虑中断向量表(内部boot rom帮我们完成了,后面中断章节我们会手动实现中断向量表),只考虑初始化C 环境即可。

1.汇编文件初始化C语言运行环境

1.设置处理器进入SVC模式(使用CPSR程序状态寄存器)

以前的 ARM 处理器有 7 种运行模型:User、FIQ、IRQ、Supervisor(SVC)、Abort、Undef和 System,其中 User 是非特权模式,其余 6 中都是特权模式。但新的 Cortex-A 架构加入了TrustZone 安全扩展,所以就新加了一种运行模式:Monitor,新的处理器架构还支持虚拟化扩展,因此又加入了另一个运行模式:Hyp,所以 Cortex-A7 处理器有 9 种处理模式,如表

模式描述
User(USR)用户模式,非特权模式,大部分程序运行的时候就处于此模式。
FIQ快速中断模式,进入 FIQ 中断异常
IRQ一般中断模式。
Supervisor(SVC)超级管理员模式,特权模式,访问CPU所有资源,供操作系统使用。
Monitor(MON)监视模式?这个模式用于安全扩展模式。
Abort(ABT)数据访问终止模式,用于虚拟存储以及存储保护。
Hyp(HYP)超级监视模式?用于虚拟化扩展。
Undef(UND)未定义指令终止模式。
System(SYS)系统模式,用于运行特权级的操作系统任务

在这里插入图片描述

怎么设置处理器进入 SVC 模式?
–>使用CPSR程序状态寄存器来设置

在这里插入图片描述

M[4:0] :处理器模式控制位,含义如表

M[4:0]处理器模式
10000User 模式
10001FIQ 模式
10010IRQ 模式
10011Supervisor(SVC)模式
10110Monitor(MON)模式
10111Abort(ABT)模式
11010Hyp(HYP)模式
11011Undef(UND)模式
11111System(SYS)模式

总结: 在这里插入图片描述

2.设置SP指针(C语言运行需要入栈和出栈,指定一段栈内存)

设置 SVC 模式下的 SP 指针=0X80200000,因为 I.MX6U-ALPHA 开发 板 上 的 DDR3 地 址 范 围 是 0X80000000 ~ 0XA0000000(512MB) 或 者0X80000000~0X90000000(256MB),不管是 512MB 版本还是 256MB 版本的,其 DDR3 起始地址都是 0X80000000。由于 Cortex-A7 的堆栈是向下增长的(高地址向低地址增长),所以将 SP 指针设置为 0X80200000,因此 SVC 模式的栈大小 0X80200000-0X80000000=0X200000=2MB, 2MB 的栈空间已经很大了,如果做裸机开发的话绰绰有余,不用担心栈溢出。

总结:这里是引用

3.跳转到C语言

使用b指令,跳转到C语言函数,比如main函数

4.汇编实现(处理器模式和SP指针)

start.s

.global _start

_start:

    /*设置处理器进入SVC模式 */
    mrs r0,cpsr      /*读取cpsr的值到r0 */
    bic r0,r0,#0x1f  /*清除cpsr的bit4--0 与运算 具体参照相关汇编指令*/
    orr r0,r0,#0x13  /*使用SVC模式   或运算  这是汇编的与运算*/
    msr cpsr,r0      /*将r0写入到cpsr中去 */

    /*设置SP指针 */  /*有的芯片比如三星 还要在设置SP指针之前手动初始化DDR和SDRAM  
				    前面分析DCD 数据的时候就已经讲过了,DCD数据包含了DDR配置
				    参数,I.MX6U 内部的Boot ROM 会读取DCD 数据中的DDR 配置参数然后完成DDR 初始化的*/
    ldr sp,=0x80200000  
    b main /*跳转到C语言main函数*/
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

2.C 语言部分实验程序编写

C 语言部分有两个文件 main.c 和 main.h, main.h 里面主要是定义寄存器地址,在 main.h里面输入代码:
main.h

#ifndef  __MAIN_H
#define  __MAIN_H

/*外设时钟寄存器*/
#define  CCM_CCGR0   *((volatile unsigned int *)0X020C4068)
#define  CCM_CCGR1   *((volatile unsigned int *)0X020C406C)
#define  CCM_CCGR2   *((volatile unsigned int *)0X020C4070)
#define  CCM_CCGR3   *((volatile unsigned int *)0X020C4074)
#define  CCM_CCGR4   *((volatile unsigned int *)0X020C4078)
#define  CCM_CCGR5   *((volatile unsigned int *)0X020C407C)
#define  CCM_CCGR6   *((volatile unsigned int *)0X020C4080)

/*
*  IOMUX 复用相关寄存器 
*/

#define SW_MUX_GPIO1_IO03 *((volatile unsigned int *)0X020E0068)
#define SW_PAD_GPIO1_IO03 *((volatile unsigned int *)0X020E02F4)

/*
* GPIO1相关寄存器           这里实际就用了前面两行定义的寄存器
*/

#define GPIO1_DR 			*((volatile unsigned int *)0X0209C000)
#define GPIO1_GDIR 			*((volatile unsigned int *)0X0209C004)
#define GPIO1_PSR 			*((volatile unsigned int *)0X0209C008)
#define GPIO1_ICR1 			*((volatile unsigned int *)0X0209C00C)
#define GPIO1_ICR2 			*((volatile unsigned int *)0X0209C010)
#define GPIO1_IMR 			*((volatile unsigned int *)0X0209C014)
#define GPIO1_ISR 			*((volatile unsigned int *)0X0209C018)
#define GPIO1_EDGE_SEL 		*((volatile unsigned int *)0X0209C01C)



#endif
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

在 main.h 中我们以宏定义的形式定义了要使用到的所有寄存器,后面的数字就是其地址,比如 CCM_CCGR0 寄存器的地址就是 0X020C4068

在 main.c里面输入代码:
main.c

#include "main.h"

/*使能所有外设时钟*/
void clk_enable(void)
{
    CCM_CCGR0 = 0xFFFFFFFF;
    CCM_CCGR1 = 0xFFFFFFFF;
    CCM_CCGR2 = 0xFFFFFFFF;
    CCM_CCGR3 = 0xFFFFFFFF;
    CCM_CCGR4 = 0xFFFFFFFF;
    CCM_CCGR5 = 0xFFFFFFFF;
    CCM_CCGR6 = 0xFFFFFFFF;
}

/*初始化LED灯*/
void led_init(void)
{
    SW_MUX_GPIO1_IO03 = 0x5;     /*复用为GPIO1--IO03 */

    SW_PAD_GPIO1_IO03 = 0x10B0;  /*设置GPIO1__IO03电气属性*/

    GPIO1_GDIR = 0x8;  //设置为输出

    GPIO1_DR = 0x0;    //默认打开LED灯

}
/*短延时*/
void delay_short(volatile unsigned int n)
{
    while(n--){}

}
/*
 * 延时  一次循环大概是1ms 在主频396MHz下测试的
 * n:延时ms数
*/
void delay(volatile unsigned int n)
{
    while (n--)
    {
        delay_short(0x7ff);
    }
    
}
/*打开LED灯*/
void  led_on(void)
{
    GPIO1_DR &= ~(1<<3); //bit3清零

}
/*关闭LED灯*/
void led_off(void )
{
    GPIO1_DR |= (1<<3);  //bit3置1
}

int main() 
{
    clk_enable();  //使能外设时钟

    led_init(); //初始化LED
  //  led_off();  
    
    while(1)
    {
        led_off();  
        delay(500);

        led_on();
        delay(500);
    }

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74

main.c 文件里面一共有 7 个函数,这 7 个函数都很简单。 clk_enable 函数是使能CCGR0~CCGR6 所控制的所有外设时钟。 led_init 函数是初始化 LED 灯所使用的 IO,包括设置IO 的复用功能、 IO 的属性配置和 GPIO 功能,最终控制 GPIO 输出低电平来打开 LED 灯。led_on 和 led_off 这两个函数看名字就知道,用来控制 LED 灯的亮灭的。 delay_short()和 delay()这两个函数是延时函数, delay_short()函数是靠空循环来实现延时的, delay()是对 delay_short()的 简 单 封 装 ,在 I.MX6U 工作 在 396MHz(Boot ROM 设 置的 396MHz)的 主 频 的 时候delay_short(0x7ff)基本能够实现大约 1ms 的延时,所以 delay()函数我们可以用来完成 ms 延时。

main 函数就是我们的主函数了,在 main 函数中先调用函数 clk_enable()和 led_init()来完成时钟使能和 LED 初始化,最终在 while(1)循环中实现 LED 循环亮灭,亮灭时间大约是 500ms。

3.编译(编写Makefile、设置程序运行起始地址)

objs := start.o main.o

ledc.bin:$(objs)
	arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf $^
	arm-linux-gnueabihf-objcopy -O binary -S ledc.elf $@
	arm-linux-gnueabihf-objdump -D -m arm ledc.elf > ledc.dis

%.o:%.s
	arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<

%.o:%.S
	arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<

%.o:%.c
	arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<

clean:
	rm -rf *.o ledc.bin ledc.elf ledc.dis
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

第 1 行定义了一个变量 objs, objs 包含着要生成 ledc.bin 所需的材料: start.o 和 main.o,也就是当前工程下的 start.s 和 main.c 这两个文件编译后的.o 文件。

注意 start.o 一定要放到最前面!因为在后面链接的时候 start.o 要在最前面,因为 start.o 是最先要执行的文件!

第 3 行就是默认目标,目的是生成最终的可执行文件 ledc.bin, ledc.bin 依赖 start.o 和 main.o如果当前工程没有 start.o 和 main.o 的时候就会找到相应的规则去生成 start.o 和 main.o。比如start.o 是 start.s 文件编译生成的,因此会执行第 8 行的规则。

第 4 行是使用 arm-linux-gnueabihf-ld 进行链接,链接起始地址是 0X87800000,但是这一行用到了自动变量“” , “ ^”,“
” ,“^”的意思是所有依赖文件的集合,在这里就是 objs 这个变量的值:start.o 和 main.o。链接的时候 start.o 要链接到最前面,因为第一行代码就是 start.o 里面的,因此这一行就相当于:

arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf start.o main.o
  • 1

第 5 行使用 arm-linux-gnueabihf-objcopy 来将 ledc.elf 文件转化为 ledc.bin,本行也用到了自动变量“@ ” , “ @”,“@”,“@”的意思是目标集合,在这里就是“ledc.bin”,那么本行就相当于

arm-linux-gnueabihf-objcopy -O binary -S ledc.elf ledc.bin
  • 1

第 6 行使用 arm-linux-gnueabihf-objdump 来反汇编,生成 ledc.dis 文件。

第 8~15 行就是针对不同的文件类型将其编译成对应的.o 文件,其实就是汇编.s(.S)和.c 文件,比如 start.s 就会使用第 8 行的规则来生成对应的 start.o 文件。第 9 行就是具体的命令,这行也用到了自动变量“@ ” 和 “ @”和“@”和“<”,其中“$<”的意思是依赖目标集合的第一个文件。比如start.s 要编译成 start.o 的话第 8 行和第 9 行就相当于:

start.o:start.s
	arm-linux-gnueabihf-gcc -Wall -nostdlib -c -O2 -o start.o start.s
  • 1
  • 2

第 17 行就是工程清理规则,通过命令“make clean”就可以清理工程。

4.烧写到SD卡并验证

烧写到SD卡并验证参照之前的博文:ARM(IMX6U)裸机汇编LED驱动实验——驱动编写、编译、烧写bin文件到SD卡中并运行

这里烧写到 sdb中

在这里插入图片描述

查看反汇编文件,堆栈地址

在这里插入图片描述

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号