赞
踩
Dijistra和A star算法在自动驾驶领域可用于路径的搜索,甚至在一定的场景下能用作轨迹的规划。
A star算法相当于是Dijistra算法的改进,在其基础上加上了绝对距离等判断条件,从而大大降低了路径搜索的范围,节约了算力。理解两个算法,我们要先从Dijistra算法开始。
Dijistra算法的思路很简单,采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。
然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。
算法的伪代码如下:
其中:
最小堆open:存储所有需要处理的节点
变量closed: 表示已经处理完的节点集
变量predecessors: 回溯最短路径上的已经访问过的节点
uCost:源节点到该点的距离
从下图可以大致理解一下Djistra的搜索过程:
假设一个从s到t的场景:
首先s可以到b和a,这是我们将其作为存储起来,这个时候从s到a的距离是大于从s到b的;因此再搜索b的下一步路径,将a保留存储。s到b再到c的距离是1.5还是小于s到a,因此继续从c向后搜索这时从s到b再到c再到d的距离大于从s到a的距离,因此从a再开始搜索,搜索一步后就到了目的地,整个算法的进程结束。
能力有限可能讲的不是很到位,大伙可以自行查阅资料,Dijistra算法还是比较好理解的。
A*算法其实就是在Dijistra算法加了一个欧氏距离或者曼哈顿距离的判断。
欧式距离:
曼哈顿距离:
其实现伪代码如图:
可以看出A*算法相对于Dijistra主要加上了绝对距离h,这个h代表的是当前点到终点的欧式距离或者曼哈顿距离。可以理解为如果我在搜索时,这个距离过大,那么这个点之后的路径将不在进行搜索。我们可以对这个欧式距离设定一定的权重,来使得A*算法探索路径的能力和得到最优路径的能力有一个很好的平衡。
Dijistra算法:
- """
- Grid based Dijkstra planning
- """
-
- import matplotlib.pyplot as plt
- import math
-
- show_animation = True
-
-
- class Dijkstra:
-
- def __init__(self, ox, oy, resolution, robot_radius):
- """
- Initialize map for a star planning
- ox: x position list of Obstacles [m]
- oy: y position list of Obstacles [m]
- resolution: grid resolution [m]
- rr: robot radius[m]
- """
-
- self.min_x = None
- self.min_y = None
- self.max_x = None
- self.max_y = None
- self.x_width = None
- self.y_width = None
- self.obstacle_map = None
-
- self.resolution = resolution
- self.robot_radius = robot_radius
- self.calc_obstacle_map(ox, oy)
- self.motion = self.get_motion_model()
-
- class Node:
- def __init__(self, x, y, cost, parent_index):
- self.x = x # index of grid
- self.y = y # index of grid
- self.cost = cost
- self.parent_index = parent_index # index of previous Node
-
- def __str__(self):
- return str(self.x) + "," + str(self.y) + "," + str(
- self.cost) + "," + str(self.parent_index)
-
- def planning(self, sx, sy, gx, gy):
- """
- dijkstra path search
- input:
- s_x: start x position [m]
- s_y: start y position [m]
- gx: goal x position [m]
- gx: goal x position [m]
- output:
- rx: x position list of the final path
- ry: y position list of the final path
- """
- #设置起点
- start_node = self.Node(self.calc_xy_index(sx, self.min_x),
- self.calc_xy_index(sy, self.min_y), 0.0, -1)
- #设置目标终点
- goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
- self.calc_xy_index(gy, self.min_y), 0.0, -1)
- #初始化两个字典
- open_set, closed_set = dict(), dict()
- #给字典放元素,先放进去起始点
- open_set[self.calc_index(start_node)] = start_node
-
- while 1:
- #搜索最小的键值对
- c_id = min(open_set, key=lambda o: open_set[o].cost)
- #得到当前可以保存的路径
- current = open_set[c_id]
- #在图像中得到展示
- # show graph
- if show_animation: # pragma: no cover
- plt.plot(self.calc_position(current.x, self.min_x),
- self.calc_position(current.y, self.min_y), "xc")
- # for stopping simulation with the esc key.
- plt.gcf().canvas.mpl_connect(
- 'key_release_event',
- lambda event: [exit(0) if event.key == 'escape' else None])
- if len(closed_set.keys()) % 10 == 0:
- plt.pause(0.001)
- #如果x,y已经等于目标点
- if current.x == goal_node.x and current.y == goal_node.y:
- print("Find goal")
- goal_node.parent_index = current.parent_index
- goal_node.cost = current.cost
- break
-
- # Remove the item from the open set
- del open_set[c_id]
-
- # Add it to the closed set
- closed_set[c_id] = current
-
- # expand search grid based on motion model
- for move_x, move_y, move_cost in self.motion:
- node = self.Node(current.x + move_x,
- current.y + move_y,
- current.cost + move_cost, c_id)
- n_id = self.calc_index(node)
-
- if n_id in closed_set:
- continue
-
- if not self.verify_node(node):
- continue
-
- if n_id not in open_set:
- open_set[n_id] = node # Discover a new node
- else:
- if open_set[n_id].cost >= node.cost:
- # This path is the best until now. record it!
- open_set[n_id] = node
-
- rx, ry = self.calc_final_path(goal_node, closed_set)
-
- return rx, ry
-
- def calc_final_path(self, goal_node, closed_set):
- # generate final path
- rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
- self.calc_position(goal_node.y, self.min_y)]
- parent_index = goal_node.parent_index
- while parent_index != -1:
- n = closed_set[parent_index]
- rx.append(self.calc_position(n.x, self.min_x))
- ry.append(self.calc_position(n.y, self.min_y))
- parent_index = n.parent_index
-
- return rx, ry
-
- def calc_position(self, index, minp):
- pos = index * self.resolution + minp
- return pos
-
- def calc_xy_index(self, position, minp):
- return round((position - minp) / self.resolution)
-
- def calc_index(self, node):
- return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
-
- def verify_node(self, node):
- px = self.calc_position(node.x, self.min_x)
- py = self.calc_position(node.y, self.min_y)
-
- if px < self.min_x:
- return False
- if py < self.min_y:
- return False
- if px >= self.max_x:
- return False
- if py >= self.max_y:
- return False
-
- if self.obstacle_map[node.x][node.y]:
- return False
-
- return True
-
- def calc_obstacle_map(self, ox, oy):
-
- self.min_x = round(min(ox))
- self.min_y = round(min(oy))
- self.max_x = round(max(ox))
- self.max_y = round(max(oy))
- print("min_x:", self.min_x)
- print("min_y:", self.min_y)
- print("max_x:", self.max_x)
- print("max_y:", self.max_y)
-
- self.x_width = round((self.max_x - self.min_x) / self.resolution)
- self.y_width = round((self.max_y - self.min_y) / self.resolution)
- print("x_width:", self.x_width)
- print("y_width:", self.y_width)
-
- # obstacle map generation
- self.obstacle_map = [[False for _ in range(self.y_width)]
- for _ in range(self.x_width)]
- for ix in range(self.x_width):
- x = self.calc_position(ix, self.min_x)
- for iy in range(self.y_width):
- y = self.calc_position(iy, self.min_y)
- for iox, ioy in zip(ox, oy):
- d = math.hypot(iox - x, ioy - y)
- if d <= self.robot_radius:
- self.obstacle_map[ix][iy] = True
- break
-
- @staticmethod
- def get_motion_model():
- # dx, dy, cost
- motion = [[1, 0, 1],
- [0, 1, 1],
- [-1, 0, 1],
- [0, -1, 1],
- [-1, -1, math.sqrt(2)],
- [-1, 1, math.sqrt(2)],
- [1, -1, math.sqrt(2)],
- [1, 1, math.sqrt(2)]]
-
- return motion
-
-
- def main():
- print(__file__ + " start!!")
-
- # start and goal position
- sx =10.0 # [m]
- sy = 10.0 # [m]
- gx = 50.0 # [m]
- gy = 50.0 # [m]
- grid_size = 2.0 # [m]
- robot_radius = 1.0 # [m]
-
- # set obstacle positions
- ox, oy = [], []
- for i in range(-10, 60):
- ox.append(i)
- oy.append(-10.0)
- for i in range(-10, 60):
- ox.append(60.0)
- oy.append(i)
- for i in range(-10, 61):
- ox.append(i)
- oy.append(60.0)
- for i in range(-10, 61):
- ox.append(-10.0)
- oy.append(i)
- for i in range(-10, 40):
- ox.append(20.0)
- oy.append(i)
- for i in range(0, 40):
- ox.append(40.0)
- oy.append(60.0 - i)
- for i in range(40, 55):
- ox.append(i)
- oy.append(30)
-
- if show_animation: # pragma: no cover
- plt.plot(ox, oy, ".k")
- plt.plot(sx, sy, "og")
- plt.plot(gx, gy, "xb")
- plt.grid(True)
- plt.axis("equal")
-
- dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
- rx, ry = dijkstra.planning(sx, sy, gx, gy)
-
- if show_animation: # pragma: no cover
- plt.plot(rx, ry, "-r")
- plt.pause(0.01)
- plt.show()
-
-
- if __name__ == '__main__':
- main()
A*算法实现(定义一个欧式距离或曼哈顿距离函数)
- """
- A* grid planning
- """
- import numpy as np
- import math
-
- import matplotlib.pyplot as plt
-
- show_animation = True
-
-
- class AStarPlanner:
-
- def __init__(self, ox, oy, resolution, rr):
- """
- Initialize grid map for a star planning
- ox: x position list of Obstacles [m]
- oy: y position list of Obstacles [m]
- resolution: grid resolution [m]
- rr: robot radius[m]
- """
-
- self.resolution = resolution
- self.rr = rr
- self.min_x, self.min_y = 0, 0
- self.max_x, self.max_y = 0, 0
- self.obstacle_map = None
- self.x_width, self.y_width = 0, 0
- self.motion = self.get_motion_model()
- self.calc_obstacle_map(ox, oy)
-
- class Node:
- def __init__(self, x, y, cost, parent_index):
- self.x = x # index of grid
- self.y = y # index of grid
- self.cost = cost
- self.parent_index = parent_index
-
- def __str__(self):
- return str(self.x) + "," + str(self.y) + "," + str(
- self.cost) + "," + str(self.parent_index)
-
- def planning(self, sx, sy, gx, gy):
- """
- A star path search
- input:
- s_x: start x position [m]
- s_y: start y position [m]
- gx: goal x position [m]
- gy: goal y position [m]
- output:
- rx: x position list of the final path
- ry: y position list of the final path
- """
- # 设置起点
- start_node = self.Node(self.calc_xy_index(sx, self.min_x),
- self.calc_xy_index(sy, self.min_y), 0.0, -1)
- # 设置目标终点
- goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
- self.calc_xy_index(gy, self.min_y), 0.0, -1)
- # 初始化两个字典
- open_set, closed_set = dict(), dict()
- # 给字典放元素,先放进去起始点
- open_set[self.calc_grid_index(start_node)] = start_node
- #添加欧式距离或者曼哈顿距离
- while 1:
- # 搜索最小的键值对,前一项和Dijstra一样,后面一项是添加的距离
- #c_id = min(open_set, key=lambda o: open_set[o].cost)
- #c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(open_set[o], goal_node))
- #c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_euclidean(open_set[o], goal_node))
- c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_manhattan(open_set[o], goal_node))
-
- # 得到当前可以保存的路径
- current = open_set[c_id]
- # 在图像中得到展示
- # show graph
- if show_animation: # pragma: no cover
- plt.plot(self.calc_grid_position(current.x, self.min_x),
- self.calc_grid_position(current.y, self.min_y), "xc")
- # for stopping simulation with the esc key.
- plt.gcf().canvas.mpl_connect(
- 'key_release_event',
- lambda event: [exit(0) if event.key == 'escape' else None])
- if len(closed_set.keys()) % 10 == 0:
- plt.pause(0.001)
- # 如果x,y已经等于目标点
- if current.x == goal_node.x and current.y == goal_node.y:
- print("Find goal")
- goal_node.parent_index = current.parent_index
- goal_node.cost = current.cost
- break
-
- # Remove the item from the open set
- del open_set[c_id]
-
- # Add it to the closed set
- closed_set[c_id] = current
-
- # expand search grid based on motion model
- for move_x, move_y, move_cost in self.motion:
- node = self.Node(current.x + move_x,
- current.y + move_y,
- current.cost + move_cost, c_id)
- n_id = self.calc_grid_index(node)
-
- if n_id in closed_set:
- continue
-
- if not self.verify_node(node):
- continue
-
- if n_id not in open_set:
- open_set[n_id] = node # Discover a new node
- else:
- if open_set[n_id].cost >= node.cost:
- # This path is the best until now. record it!
- open_set[n_id] = node
-
- rx, ry = self.calc_final_path(goal_node, closed_set)
-
-
- return rx, ry
-
- def calc_final_path(self, goal_node, closed_set):
- # generate final path,用于更新最后的环境
- rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [
- self.calc_grid_position(goal_node.y, self.min_y)]
- parent_index = goal_node.parent_index
- while parent_index != -1:
- n = closed_set[parent_index]
- rx.append(self.calc_grid_position(n.x, self.min_x))
- ry.append(self.calc_grid_position(n.y, self.min_y))
- parent_index = n.parent_index
-
- return rx, ry
-
- @staticmethod
- #三角形距离计算
- # def calc_heuristic(n1, n2):
- # w = 5.0 # weight of heuristic
- # d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
- # return d
- #欧氏距离计算
- # def calc_euclidean(n1,n2):
- # w=1.0
- # d=w*pow(pow(n1.x-n2.x,2)+pow(n1.y-n2.y,2),0.5)
- # return d
- #曼哈顿距离计算
-
- def calc_manhattan(n1,n2):
- """
- 添加曼哈顿距离
- w:权重系数
- n1:x方向node
- n2:y方向node
- d:距离
- """
- w = 5.0
- d = w*(abs(n1.x-n2.x)+abs(n1.y - n2.y))
- return d
-
- def calc_grid_position(self, index, min_position):
- """
- calc grid position
- :param index:
- :param min_position:
- :return:
- """
- pos = index * self.resolution + min_position
- return pos
- #获取下标的函数
- def calc_xy_index(self, position, min_pos):
- return round((position - min_pos) / self.resolution)
- #获取网格下标
- def calc_grid_index(self, node):
- return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
- #判断存入节点选择
- def verify_node(self, node):
- px = self.calc_grid_position(node.x, self.min_x)
- py = self.calc_grid_position(node.y, self.min_y)
-
- if px < self.min_x:
- return False
- elif py < self.min_y:
- return False
- elif px >= self.max_x:
- return False
- elif py >= self.max_y:
- return False
-
- # collision check
- if self.obstacle_map[node.x][node.y]:
- return False
-
- return True
- #生成地图
- def calc_obstacle_map(self, ox, oy):
-
- self.min_x = round(min(ox))
- self.min_y = round(min(oy))
- self.max_x = round(max(ox))
- self.max_y = round(max(oy))
- print("min_x:", self.min_x)
- print("min_y:", self.min_y)
- print("max_x:", self.max_x)
- print("max_y:", self.max_y)
-
- self.x_width = round((self.max_x - self.min_x) / self.resolution)
- self.y_width = round((self.max_y - self.min_y) / self.resolution)
- print("x_width:", self.x_width)
- print("y_width:", self.y_width)
-
- # obstacle map generation
- self.obstacle_map = [[False for _ in range(self.y_width)]
- for _ in range(self.x_width)]
- for ix in range(self.x_width):
- x = self.calc_grid_position(ix, self.min_x)
- for iy in range(self.y_width):
- y = self.calc_grid_position(iy, self.min_y)
- for iox, ioy in zip(ox, oy):
- d = math.hypot(iox - x, ioy - y)
- if d <= self.rr:
- self.obstacle_map[ix][iy] = True
- break
- #规定可执行动作行为
- @staticmethod
- def get_motion_model():
- # dx, dy, cost
- motion = [[1, 0, 1],
- [0, 1, 1],
- [-1, 0, 1],
- [0, -1, 1],
- [-1, -1, math.sqrt(2)],
- [-1, 1, math.sqrt(2)],
- [1, -1, math.sqrt(2)],
- [1, 1, math.sqrt(2)]]
-
- return motion
-
-
- def main():
- print(__file__ + " start!!")
-
- # start and goal position
- sx = 10.0 # [m]
- sy = 10.0 # [m]
- gx = 50.0 # [m]
- gy = 50.0 # [m]
- grid_size = 2.0 # [m]
- robot_radius = 1.0 # [m]
-
- # set obstacle positions
- ox, oy = [], []
- for i in range(-10, 60):
- ox.append(i)
- oy.append(-10.0)
- for i in range(-10, 60):
- ox.append(60.0)
- oy.append(i)
- for i in range(-10, 61):
- ox.append(i)
- oy.append(60.0)
- for i in range(-10, 61):
- ox.append(-10.0)
- oy.append(i)
- for i in range(-10, 40):
- ox.append(20.0)
- oy.append(i)
- for i in range(0, 40):
- ox.append(40.0)
- oy.append(60.0 - i)
- # #添加一个障碍
- for i in range(40, 55):
- ox.append(i)
- oy.append(30)
-
-
-
- if show_animation: # pragma: no cover
- #显示中文标题
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签
- plt.rcParams['axes.unicode_minus'] = False
- plt.title("路径规划实验结果")
- #设置坐标轴字体字号
- plt.yticks(fontproperties='Times New Roman', size=16)
- plt.xticks(fontproperties='Times New Roman', size=16)
- #更改作图颜色
- plt.plot(ox, oy, ".r")
- plt.plot(sx, sy, "og")
- plt.plot(gx, gy, "xb")
- plt.grid(True)
- plt.axis("equal")
-
- a_star = AStarPlanner(ox, oy, grid_size, robot_radius)
- rx, ry = a_star.planning(sx, sy, gx, gy)
-
- if show_animation: # pragma: no cover
- plt.plot(rx, ry, "-b")
- plt.pause(0.001)
- plt.show()
- plt.show()
-
-
- if __name__ == '__main__':
- main()
Dijistra算法:
A*算法:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。