赞
踩
import abc
import pandas as pd
import numpy as np
import re
class Expression(abc.ABC):
def __str__(self):
return type(self).__name__
def __repr__(self):
return str(self)
def __add__(self, other):
return Add(self, other) # 重载运算符 +
def __radd__(self, other):
return Add(other, self)
def __sub__(self, other):
return Sub(self, other) # 重载运算符 -
def __rsub__(self, other):
return Sub(other, self)
def __mul__(self, other):
return Mul(self, other)
def __rmul__(self, other):
return Mul(self, other)
def __div__(self, other):
return Div(self, other)
def __rdiv__(self, other):
return Div(other, self)
def load(self, instrument, start_index, end_index, *args):
series = self._load_internal(instrument, start_index, end_index, *args)
return series
@abc.abstractmethod
def _load_internal(self, instrument, start_index, end_index, *args) -> pd.Series:
raise NotImplementedError("This function must be implemented in your newly defined feature")
class ExpressionOps(Expression):
pass
#################### Pair-Wise Operator ####################
class PairOperator(ExpressionOps):
def __init__(self, feature_left, feature_right):
self.feature_left = feature_left
self.feature_right = feature_right
def __str__(self):
return "{}({},{})".format(type(self).__name__, self.feature_left, self.feature_right)
class NpPairOperator(PairOperator):
def __init__(self, feature_left, feature_right, func):
self.func = func
super(NpPairOperator, self).__init__(feature_left, feature_right)
def _load_internal(self, instrument, start_index, end_index, *args):
if isinstance(self.feature_left, (Expression,)):
series_left = self.feature_left.load(instrument, start_index, end_index, *args)
else:
series_left = self.feature_left # numeric value
if isinstance(self.feature_right, (Expression,)):
series_right = self.feature_right.load(instrument, start_index, end_index, *args)
else:
series_right = self.feature_right
res = getattr(np, self.func)(series_left, series_right)
return res
class Add(NpPairOperator):
def __init__(self, feature_left, feature_right):
super(Add, self).__init__(feature_left, feature_right, "add")
class Sub(NpPairOperator):
def __init__(self, feature_left, feature_right):
super(Sub, self).__init__(feature_left, feature_right, "subtract")
class Mul(NpPairOperator):
def __init__(self, feature_left, feature_right):
super(Mul, self).__init__(feature_left, feature_right, "multiply")
class Div(NpPairOperator):
def __init__(self, feature_left, feature_right):
super(Div, self).__init__(feature_left, feature_right, "divide")
class Feature(Expression):
"""Static Expression
This kind of feature will load data from provider
"""
def __init__(self, name=None):
if name:
self._name = name
else:
self._name = type(self).__name__
def __str__(self):
return "$" + self._name
def _load_internal(self, instrument, start_index, end_index):
return instrument.loc[start_index:end_index][self._name]
def parse_field(field):
# Following patterns will be matched:
# - $close -> Feature("close")
# - $close5 -> Feature("close5")
# - $open+$close -> Feature("open")+Feature("close")
if not isinstance(field, str):
field = str(field)
for pattern, new in [
(rf"\$([\w]+)", r'Feature("\1")'),
]: # Features # Operators
field = re.sub(pattern, new, field)
return field
def compute_feature(df, exp):
exp = eval(parse_field(exp))
return exp.load(df, 0, len(df))
def compute_features(df, exps, labels):
data = dict()
for label, exp in zip(labels, exps):
data[label] = compute_feature(df, exp)
if len(data) > 1:
return pd.concat(data, axis=1)
else:
return pd.DataFrame(data)
data = {
'a' : [1,2,3,4,5],
'b' : [6,7,8,9,0]
}
df = pd.DataFrame(data)
compute_features(df, ["$a", "$b", "($a + $b) * ($a - $b)"], ['a','b', 'a^2 - b^2'])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。