当前位置:   article > 正文

如何利用langchian调用百度大模型API_langchain 使用百度商用大模型

langchain 使用百度商用大模型

Baidu AI Cloud Qianfan Platform 使用LangChain进行聊天模型集成

概述

百度智能云的千帆平台是一个一站式的大模型开发和服务运营平台,为企业开发者提供了包括文心一言(ERNIE-Bot)和第三方开源模型在内的多种模型。主要分为三类模型:

  1. Embedding
  2. Chat
  3. Completion

本文介绍如何使用LangChain与千帆平台的聊天模型进行集成,具体对应LangChain的langchain/chat_models包。

API 初始化

在使用百度千帆平台的大模型服务前,需要初始化相关参数,可以通过环境变量或者直接传参进行初始化:

export QIANFAN_AK=XXX
export QIANFAN_SK=XXX
  • 1
  • 2
支持的模型
  • ERNIE-Bot-turbo(默认)
  • ERNIE-Bot
  • ERNIE-Speed-128K
  • BLOOMZ-7B
  • Llama-2-7b-chat
  • Llama-2-13b-chat
  • Llama-2-70b-chat
  • Qianfan-BLOOMZ-7B-compressed
  • Qianfan-Chinese-Llama-2-7B
  • ChatGLM2-6B-32K
  • AquilaChat-7B
基本设置和调用

使用示例代码初始化并调用聊天模型:

import os
from langchain_community.chat_models import QianfanChatEndpoint
from langchain_core.language_models.chat_models import HumanMessage

os.environ["QIANFAN_AK"] = "Your_api_key"
os.environ["QIANFAN_SK"] = "Your_secret_Key"

chat = QianfanChatEndpoint(streaming=True)
messages = [HumanMessage(content="Hello")]
response = chat.invoke(messages)

print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
异步调用

可以使用异步方法进行调用:

await chat.ainvoke(messages)
  • 1
批量调用

支持批量处理消息:

responses = chat.batch([messages])
print(responses[0].content)
  • 1
  • 2
流式处理

支持流式处理消息输出:

try:
    for chunk in chat.stream(messages):
        print(chunk.content, end="", flush=True)
except TypeError as e:
    print(e)
  • 1
  • 2
  • 3
  • 4
  • 5
使用不同模型

默认使用ERNIE-Bot-turbo,如果需要使用其他模型,可以在初始化时指定:

chatBot = QianfanChatEndpoint(
    streaming=True,
    model="ERNIE-Bot",
)

messages = [HumanMessage(content="Hello")]
response = chatBot.invoke(messages)
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
模型参数

目前只有ERNIE-Bot和ERNIE-Bot-turbo支持以下参数,可以在调用时指定:

  • temperature
  • top_p
  • penalty_score

示例代码:

response = chat.invoke(
    [HumanMessage(content="Hello")],
    **{"top_p": 0.4, "temperature": 0.1, "penalty_score": 1}
)
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/711161
推荐阅读
  

闽ICP备14008679号