赞
踩
time limit per test2 seconds
memory limit per test256 megabytes
We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we’ll call a positive integer t Т-prime, if t has exactly three distinct positive divisors.
You are given an array of n positive integers. For each of them determine whether it is Т-prime or not.
The first line contains a single positive integer, n (1 ≤ n ≤ 105), showing how many numbers are in the array. The next line contains n space-separated integers xi (1 ≤ xi ≤ 1012).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier.
Print n lines: the i-th line should contain “YES” (without the quotes), if number xi is Т-prime, and “NO” (without the quotes), if it isn’t.
3
4 5 6
YES
NO
NO
The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is “YES”. The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is “NO”.
题意: 给你n个数范围
分析: 我们首先知道除了1之外的任意数,最少包含2个因子(1和本身),当一个数含有一个非平方根之外的因子时,必然存在与之对应的另一个因子,比如当 15 的一个因子为3,存在另一因子 5,与之对应,所以我们只需判断该数的平方根是否为素数即可,比如 36,该数的平方根为6,则必存在其他因子,我们只需打 十万之内的素数表判断即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7;
bool isp[maxn];
void init() {
isp[0] = isp[1] = true;
for(int i = 2;i <= 1000;i++) {
for(int j = i*2;j < maxn;j += i) {
isp[j] = true;
}
}
}
int main() {
int n;cin>>n;
init();
while(n--) {
ll x;scanf("%lld",&x);
ll m = (ll)sqrt(x+0.5);
if(m*m == x && !isp[m]) {
puts("YES");
} else {
puts("NO");
}
}
return 0;
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。