当前位置:   article > 正文

Keras深度学习实战(17)——使用U-Net架构进行图像分割_u-net模型 keras

u-net模型 keras

0. 前言

我们已经在系列博文中学习了如何检测对象类别以及定位图像中对象的边界框,即图像分类与目标检测。图像分割 (Image Segmentation) 是计算机视觉领域中另一重要和基础性的问题,也是十分具有挑战性的任务之一。在本节中,我们将学习如何使用神经网络模型执行图像分割任务。

1. 图像分割相关研究

1.1 图像分割简介

图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性、不同子区域间特征呈现较为明显的差异。图像分割是是计算机视觉中一项基础的任务,已经广泛应用于许多实际场景中,例如自动驾驶、医学图像处理和面部分割等。

1.2 图像分割分类

按照图像中对象被分割后的结果,可以将图像分割分为语义分割、实例分割和全景分割三种类型,不同类型的分割结果如下图所示。

图像分割
语义分割 (Semantic Segmentation) 是为了便于图像分析而为图像中的每个像素分配标签的过程,属于某个对象的所有像素都被突出显示,比如用值 1 覆盖车辆对象像素(假设像素值在 0 - 1 之间),用值 0.5 覆盖人物对象像素,而其他像素则使用其他值显示。
实例分割 (Instan

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/744598
推荐阅读
  

闽ICP备14008679号