当前位置:   article > 正文

一个比较高效的素数判断算法_判断一种是素数的算法,复杂度要求还是sqrt(n)

判断一种是素数的算法,复杂度要求还是sqrt(n)

高效素数判断算法

算法概述

此算法将其他博主对基本素数算法的一些改进进行了整合,其中主要整合了如下三条规则:

  1. 大于3的素数一定在6的倍数前一个或后一个(如素数37在36的后面)
  2. 要判断n是否为素数,只需要让n从2开始,依次除到根号n即可
  3. 在进行“让n从2开始,依次除到根号n”过程中,若n除以2的余数不为0,可以直接跳过[2, sqrt(n)]里面的所有偶数

博主语文素养不高,表达不是很准确,在后面会对这三条规则进行解释。

规则详解

  1. 大于3的素数一定在6的倍数前一个或后一个(如素数37在36的后面)
  • 数学证明:

任意一个整数n可以表示为n = 6a + b ( 0 <= b <= 5, a >= 0 ),接下来依次讲当n等于0到5的情况,以对此结论进行证明:
当n = 6a + 0 = 6a时,n有一个不为1及其本身的因数(素数判断条件)6,此类数不为素数
当n = 6a + 2 = 2( 3a + 1 )时,n有一个不为1及其本身的因数(素数判断条件)2,此类数不为素数
当n = 6a + 3 = 3( 2a + 1 )时,同上,有一因数3,此类数也不为素数
当n = 6a + 4 = 2( 3a + 2 )时,有一因数2, 此类数也不为素数
而当n = 6a + 1 或 n = 6a + 5时,不能绝对确定n是否为素数,需要考虑a的取值,显然此时的数值n就是分布在6的倍数前一个或后一个
总结:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/75239
推荐阅读
相关标签
  

闽ICP备14008679号