赞
踩
神经算法通常指的是神经网络算法,它是一类受到人脑神经元结构启发的机器学习算法。
神经网络模拟人脑的工作方式,通过学习从输入到输出的映射关系,以解决复杂的问题。
神经网络包含输入层、隐藏层和输出层,其中每个层都包含多个神经元,它们通过调整连接权重来进行学习。
以下是一个简单的用 Java 实现的神经网络示例。这个示例使用了一个简单的前馈神经网络(Feedforward Neural Network)来解决 XOR 问题。这个网络有一个输入层、一个隐藏层和一个输出层。
- import org.apache.commons.math3.analysis.function.Sigmoid;
- import org.apache.commons.math3.linear.Array2DRowRealMatrix;
- import org.apache.commons.math3.linear.RealMatrix;
-
- public class NeuralNetwork {
-
- private RealMatrix inputLayer;
- private RealMatrix hiddenLayerWeights;
- private RealMatrix hiddenLayerBiases;
- private RealMatrix outputLayerWeights;
- private RealMatrix outputLayerBiases;
-
- public NeuralNetwork() {
- initializeWeightsAndBiases();
- }
-
- private void initializeWeightsAndBiases() {
- // Initialize weights and biases (random initialization for simplicity)
- hiddenLayerWeights = new Array2DRowRealMatrix(new double[][]{{0.5, 0.2}, {-0.5, 0.3}});
- hiddenLayerBiases = new Array2DRowRealMatrix(new double[]{0.1, -0.1});
-
- outputLayerWeights = new Array2DRowRealMatrix(new double[]{0.3, -0.2});
- outputLayerBiases = new Array2DRowRealMatrix(new double[]{0.2});
- }
-
- public double predict(double input1, double input2) {
- // Forward pass
- inputLayer = new Array2DRowRealMatrix(new double[]{input1, input2});
- RealMatrix hiddenLayerInput = hiddenLayerWeights.multiply(inputLayer.transpose()).add(hiddenLayerBiases);
- RealMatrix hiddenLayerOutput = applyActivationFunction(hiddenLayerInput);
-
- RealMatrix outputLayerInput = outputLayerWeights.multiply(hiddenLayerOutput).add(outputLayerBiases);
- RealMatrix outputLayerOutput = applyActivationFunction(outputLayerInput);
-
- return outputLayerOutput.getEntry(0, 0);
- }
-
- private RealMatrix applyActivationFunction(RealMatrix matrix) {
- Sigmoid sigmoid = new Sigmoid();
- return matrix.copy().scalarAdd(1).operate(sigmoid);
- }
-
- public static void main(String[] args) {
- NeuralNetwork neuralNetwork = new NeuralNetwork();
-
- // Training XOR function
- double[][] trainingData = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
- double[] labels = {0, 1, 1, 0};
-
- for (int epoch = 0; epoch < 10000; epoch++) {
- for (int i = 0; i < trainingData.length; i++) {
- double input1 = trainingData[i][0];
- double input2 = trainingData[i][1];
- double label = labels[i];
-
- // Forward pass
- double prediction = neuralNetwork.predict(input1, input2);
-
- // Backpropagation
- double error = label - prediction;
-
- // Update weights and biases (gradient descent)
- neuralNetwork.hiddenLayerWeights = neuralNetwork.hiddenLayerWeights.add(
- neuralNetwork.inputLayer.transpose().scalarMultiply(error)
- .scalarMultiply(neuralNetwork.outputLayerWeights.getEntry(0, 0))
- .scalarMultiply(applyDerivative(neuralNetwork.hiddenLayerWeights))
- );
- neuralNetwork.hiddenLayerBiases = neuralNetwork.hiddenLayerBiases.add(
- neuralNetwork.outputLayerWeights.getEntry(0, 0) * error
- * applyDerivative(neuralNetwork.hiddenLayerBiases)
- );
-
- neuralNetwork.outputLayerWeights = neuralNetwork.outputLayerWeights.add(
- neuralNetwork.hiddenLayerOutput().transpose().scalarMultiply(error)
- .scalarMultiply(applyDerivative(neuralNetwork.outputLayerWeights))
- );
- neuralNetwork.outputLayerBiases = neuralNetwork.outputLayerBiases.add(
- error * applyDerivative(neuralNetwork.outputLayerBiases)
- );
- }
- }
-
- // Test the trained network
- System.out.println("Prediction for (0, 0): " + neuralNetwork.predict(0, 0));
- System.out.println("Prediction for (0, 1): " + neuralNetwork.predict(0, 1));
- System.out.println("Prediction for (1, 0): " + neuralNetwork.predict(1,

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。