当前位置:   article > 正文

基于Tensorflow和Keras实现卷积神经网络CNN_keras 搭配tensorflow

keras 搭配tensorflow

一、环境配置

1、安装Anaconda

前面博客有提

2、配置TensorFlow、Keras

①创建虚拟环境
输入下面命令

conda create -n tfl python=3.6
#tfl是自己为创建虚拟环境取的名字,后面python的版本可以根据自己需求进行选择

  • 1
  • 2
  • 3

②安装tensorflow和keras

pip install 包名
#直接这样安装可以由于网络的原因,安装失败或者安装很慢
#解决方式:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 包名
#此次安装命令如下:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.14.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras==2.2.5

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

激活环境

activate
conda activate tf1

  • 1
  • 2
  • 3

卷积神经网络CNN的结构

①输入层
用于数据的输入
②卷积层
使用卷积核进行特征提取和特征映射
③激励层
由于卷积也是一种线性运算,因此需要增加非线性映射
④池化层
进行下采样,对特征图稀疏处理,减少数据运算量。
⑤全连接层
通常在CNN的尾部进行重新拟合,减少特征信息的损失
整个结构图
在这里插入图片描述

重要层的说明

①卷积层
在这里插入图片描述
上面图中是33的卷积核(卷积核一般采用33和2*2 )与上一层的结果(输入层)进行卷积的过程
②池化层
在这里插入图片描述
最大池化,它只是输出在区域中观察到的最大输入值
均值池化,它只是输出在区域中观察到的平均输入值
两者最大区别在于卷积核的不同(池化是一种特殊的卷积过程)
③全连接层
在这里插入图片描述
全连接过程,跟神经网络一样,就是每个神经元与上一层的所有神经元相连

卷积神经网络CNN的特点

①局部连接
每个神经元不再和上一层的所有神经元相连,而只和一小部分神经元相连。这样就减少了很多参数。
②权值共享
一组连接可以共享同一个权重,而不是每个连接有一个不同的权重,这样又减少了很多参数。
③下采样
可以使用Pooling来减少每层的样本数,进一步减少参数数量,同时还可以提升模型的鲁棒性。

二、数据集准备

下载数据集并解压到一个没有中文的路径上
https://pan.baidu.com/s/1f-MvZl7_J6DF7P9CGBY3SQ——提取码:ruyn
在这里插入图片描述

然后项目管理器中打开jupyter notebook(tfl)
在这里插入图片描述

选择如下
在这里插入图片描述

三、猫狗数据预处理

12

对猫狗图像进行分类,代码如下:

import os, shutil 
# 原始目录所在的路径
original_dataset_dir = 'E:\\Cat_And_Dog\\train\\'

# 数据集分类后的目录
base_dir = 'E:\\Cat_And_Dog\\train1'
os.mkdir(base_dir)

# # 训练、验证、测试数据集的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# 猫测试数据集所在目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# 狗测试数据集所在目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# 将前1000张猫图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# 将下500张猫图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张猫图像复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将前1000张狗图像复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82

分类后结果
在这里插入图片描述

查看分类后,对应目录下的图片数量:

#输出数据集对应目录下图片数量
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

(2)猫狗分类的实例——基准模型

构建网络模型:

#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

查看模型各层的参数状况:

#输出模型各层的参数状况
model.summary()

  • 1
  • 2
  • 3

在这里插入图片描述

配置优化器:
loss:计算损失,这里用的是交叉熵损失
metrics:列表,包含评估模型在训练和测试时的性能的指标

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

图片格式转化
所有图片(2000张)重设尺寸大小为 150x150 大小,并使用 ImageDataGenerator 工具将本地图片 .jpg 格式转化成 RGB 像素网格,再转化成浮点张量上传到网络上。

from keras.preprocessing.image import ImageDataGenerator

# 所有图像将按1/255重新缩放
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # 这是目标目录
        train_dir,
        # 所有图像将调整为150x150
        target_size=(150, 150),
        batch_size=20,
        # 因为我们使用二元交叉熵损失,我们需要二元标签
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

查看上述图像预处理过程中生成器的输出,
在这里插入图片描述
查看上述图像预处理过程中生成器的输出,

#查看上面对于图片预处理的处理结果
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

开始训练模型

#模型训练过程
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

保存模型。

#保存训练得到的的模型
model.save('G:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_1.h5')

  • 1
  • 2
  • 3

结果可视化(需要在 tf1 虚拟环境中安装 matplotlib 库,命令:pip install matplotlib -i “https://pypi.doubanio.com/simple/”)。

#对于模型进行评估,查看预测的准确性
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

在这里插入图片描述
在这里插入图片描述

上面建完的模型就保留着,我们重新建一个 .ipynb 文件,重新开始建模。
首先猫狗图像预处理,只不过这里将分类好的数据集放在 train2 文件夹中,其它的都一样。
然后配置网络模型、构建优化器,然后进行数据增强,代码如下:
图像数据生成器增强数据:

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

查看数据增强结果

import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
# We pick one image to "augment"
img_path = fnames[3]
# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))
# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)
# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)
# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

在这里插入图片描述
图片格式转化。

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

开始训练并保存结果。

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
model.save('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_2.h5')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述
结果可视化:

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在这里插入图片描述
在这里插入图片描述

下面在此数据增强的基础上,再增加一层 dropout 层,再来训练看看。

在网络模型处添加一层

#退出层
model.add(layers.Dropout(0.5))

  • 1
  • 2
  • 3

在这里插入图片描述
在这里插入图片描述

参考

https://blog.csdn.net/ssj925319/article/details/117787737
https://blog.csdn.net/qq_43279579/article/details/117298169

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/776317
推荐阅读
相关标签
  

闽ICP备14008679号