赞
踩
每一场体育赛事都会产生大量数据,这些数据可用于分析运动员、球队表现以及比赛中的亮点。作为分析案例,我们使用T20世界杯的数据进行分析。如果你有兴趣学习如何分析类似T20世界杯这样的体育赛事,本文将为您提供指导。在本文中,我们将使用 Python 来分析 2022年T20世界杯的数据。
我们使用的数据集主要的关键数据信息如下,具体数据可以直接下载原始数据进行查看:
原始数据下载:文末公众号回复
D01
即可下载。
使用如下的代码进行导入数据,主要使用的 Package 是 Python 的 pandas
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
pio.templates.default = "plotly_white"
data = pd.read_csv("data\\t20-world-cup-22.csv")
print(data.head())
打印的数据内容如下:
PyDev console: starting.
Python 3.8.8 (tags/v3.8.8:024d805, Feb 19 2021, 13:18:16) [MSC v.1928 64 bit (AMD64)] on win32
...
venue team1 ... best bowler best bowling figure
0 SCG New Zealand ... Tim Southee 3-6
1 Optus Stadium Afghanistan ... Sam Curran 5-10
2 Blundstone Arena Ireland ... Maheesh Theekshana 2-19
3 MCG Pakistan ... Hardik Pandya 3-30
4 Blundstone Arena Bangladesh ... Taskin Ahmed 4-25
[5 rows x 17 columns]
现在让我们来看一看每支球队在世界杯中赢得的比赛数量:
figure = px.bar(data,
x=data["winner"],
title="2022年T20世界杯中各队赢得的比赛数")
figure.show()
最后生成的图表:
从图表中可以看出,获胜次数最多的是英格兰,他们赢得了五场比赛。而巴基斯坦和印度都赢得了4场比赛。
现在让我们来看一看在2022年T20世界杯中,先打或后打的比赛获胜次数:
won_by = data["won by"].value_counts()
label = won_by.index
counts = won_by.values
colors = ['#004c6d','#c1e7ff']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='比赛胜利次数按得分或击球数来计算')
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=30,
marker=dict(colors=colors, line=dict(color='black', width=3)))
fig.show()
图表分析可知,在2022年T20世界杯中,有16场比赛是由先打的一方获胜,而有13场比赛是由追击的一方获胜。
现在,让我们来看一看各支球队在世界杯中的抛硬币决策:
toss = data["toss decision"].value_counts()
label = toss.index
counts = toss.values
colors = ['skyblue','yellow']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='2022年T20世界杯中的抛硬币决策')
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=30,
marker=dict(colors=colors, line=dict(color='black', width=3)))
fig.show()
图表分析可知,在17场比赛中,球队选择了先打,而在13场比赛中,球队选择了先防守。
现在让我们来看一看2022年T20世界杯中的最高得分者:
代码示例:
figure = px.bar(data,
x=data["top scorer"],
y = data["highest score"],
color = data["highest score"],
title="2022年T20世界杯的最高得分者")
figure.show()
从上述柱状图表中可以看到Virat Kohli
在3场比赛中得分最高。毫无疑问,他是2022年T20世界杯中最出色的击球手。
现在让我们来看一看世界杯中的最佳球员奖次数:
代码示例如下:
figure = px.bar(data,
x = data["player of the match"],
title="世界杯比赛最佳球员奖")
figure.show()
在图表中可以直观的看出,以下是在比赛结束时获得最佳投球数据的投手:
以上球员在两场比赛中获得了最佳投手奖,没有球员在超过两场比赛中获得该奖项。
接下来让我们比较一下2022年T20世界杯每个球场的第一次和第二次跑分情况:
fig = go.Figure()
fig.add_trace(go.Bar(
x=data["venue"],
y=data["first innings score"],
name='First Innings Runs',
marker_color='#003f5c'
))
fig.add_trace(go.Bar(
x=data["venue"],
y=data["second innings score"],
name='Second Innings Runs',
marker_color='#c1e7ff'
))
fig.update_layout(barmode='group',
xaxis_tickangle=-45,
title="最适合先击球或追逐的球场")
fig.show()
最后根据图表分析可以得出 :SCG 球场的投球条件以先发制人更有利而闻名,这就是为什么许多球队在2019年世界杯期间更喜欢在该球场先发制人的原因。然而,应该注意到这种优势可能会因天气条件和投手的表现等因素而有所不同。
接下来进行比较一下2022年T20世界杯每个球场的第一次和第二次失去的球数:
fig = go.Figure()
fig.add_trace(go.Bar(
x=data["venue"],
y=data["first innings wickets"],
name='First Innings Wickets',
marker_color='blue'
))
fig.add_trace(go.Bar(
x=data["venue"],
y=data["second innings wickets"],
name='Second Innings Wickets',
marker_color='red'
))
fig.update_layout(barmode='group',
xaxis_tickangle=-45,
title="最适合先发球或后手防守的球场")
fig.show()
从下表中可以看出:SCG 是最适合在防守目标时投球的球场,而 Optus 体育场则是最适合先发球的球场。
从我们的分析中,我们发现了2022年T20世界杯的一些亮点:
希望你喜欢这篇关于使用 Python 进行 2022年T20世界杯分析的文章。
如果有任何有价值的问题,请随时在下方评论区提问。
本书详细阑述了与Pandas数据分析相关的基本解决方案,主要包括数据分析导论、使用PandasDataFrame、使用Pandas进行数据整理、聚合PandasDataFrame、使用Pandas和Matplotlib可视化数据、使用Seaborn和自定义技术绘图、金融分析、基于规则的异常检测、Python机器学习入门、做出更好的预测、机器学习异常检测等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
图书数量:下方名片内小程序直接抽奖送出 1 本《Pandas数据分析》 !
活动时间:截止到 2023/11/15 21:00:00
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。