赞
踩
从起始结点开始访问所有的深度遍历路径或广度优先路径,则到达终点结点的路径有多条,取其中路径权值最短的一条则为最短路径。
算法思想:深度优先搜索算法(Depth First Search,简称DFS):一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。属于盲目搜索,最糟糕的情况算法时间复杂度为 O ( V ! ) O(V!) O(V!)。
应用场景:单源最短路径算法,不能求含负权边的图
算法时间复杂度:
O
(
V
!
)
O(V!)
O(V!)
深度优先搜索求解最短路问题完整代码:
import copy import itertools class DFS: def __init__(self, graph): self.adjacent_list = graph def run(self, source, target): # 深度优先搜索遍历,获取source-target的所有路径 path = [] paths = [] self.helper(source, target, path, paths) # 返回最短路径,及距离 shortest_path = None shortest_distance = 1 << 31 for path in paths: distance = 0 for i, j in itertools.pairwise(path): distance += self.get_distance(i, j) if distance < shortest_distance: shortest_distance = distance shortest_path = path return shortest_path, shortest_distance def helper(self, source, target, path, paths): current = source path.append(current) if current == target: paths.append(copy.deepcopy(path)) path.remove(current) return neighbors = self.get_neighbors(current) for neighbor in neighbors: self.helper(neighbor, target, path, paths) path.remove(current) def get_neighbors(self, node): neighbor_weight_list = self.adjacent_list[node] neighbors = [] for neighbor, weight in neighbor_weight_list: neighbors.append(neighbor) return neighbors def get_distance(self, i, j): neighbor_weight_list = self.adjacent_list[i] for neighbor, weight in neighbor_weight_list: if neighbor == j: return weight return None if __name__ == '__main__': # 图的邻接矩阵表示 adjacent_list = { 0: [(1, 5), (2, 2)], 1: [(3, 1), (4, 6)], 2: [(3, 6), (5, 8)], 3: [(4, 1), (5, 2)], 4: [(6, 7)], 5: [(6, 3)], 6: [] } dfs = DFS(adjacent_list) print(dfs.run(source=0, target=6))
深度优先搜索图时,可以使用栈,效率更高。此外,不必遍历完所有路径再计算路径距离选出最短路,每次回溯时,若当前距离比已找到的路径距离更长,即可提前结束本次搜索。
应用场景:多源最短路径算法(即一次性计算出所有点之间相互的最短距离),适用于任何图,不管有向无向,边权正负,但是最短路必须存在。(可以处理有负权边的情况,但无法处理负权环)
其思想是:两点之间的最短路径,要么是这两点直接相连,要么是通过某一点中转。如i到j点间的最短路,要么是i和j直接直接相连,要么通过i->k->j。因此floyd算法通过两个矩阵,distance记录任意两点之间的最短距离,sequence矩阵记录两点之间的中转点。对于任意的两点i和j,检查通过其他所有的点k,(
k
∈
V
−
{
i
,
j
}
k \in V -\{i,j\}
k∈V−{i,j}),是否距离更短,即若distance[i][k]+distance[k][j]<distance[i][j]
,则更新distance[i][j]=distance[i][k]+distance[k][j]
,并记录sequence[i][j]=k
。
时间复杂度: O ( V 3 ) O(V^3) O(V3)(三层for循环)
import collections import numpy as np def floyd_warshall(adjacent_list, source=0, target=6): node_list = adjacent_list.keys() distance = np.empty(shape=(len(node_list), len(node_list)), ) sequence = collections.defaultdict(int) distance.fill(np.inf) for i in range(distance.shape[0]): distance[i][i] = 0 for i, j_weight_list in adjacent_list.items(): for j, weight in j_weight_list: distance[i][j] = weight for i in node_list: for j in node_list: for k in node_list: if distance[i][k] + distance[k][j] < distance[i][j]: distance[i][j] = distance[i][k] + distance[k][j] sequence[i, j] = k print(distance) print(sequence) path = [target] mid = sequence.get((source, target)) path.append(mid) while True: mid = sequence.get((source, mid), source) path.append(mid) if mid == source: break path.reverse() return path if __name__ == '__main__': # 图的邻接矩阵表示 adjacent_list = { 0: [(1, 5), (2, 2)], 1: [(3, 1), (4, 6)], 2: [(3, 6), (5, 8)], 3: [(4, 1), (5, 2)], 4: [(6, 7)], 5: [(6, 3)], 6: [] } print(floyd_warshall(adjacent_list, source=0, target=6))
注:每次从T集合中取出最小标号的顶点,是有优先级的,即标号最小的优先弹出,因此可以使用优先队列,进一步可以使用斐波那契堆进行优化。
import numpy as np inf = np.inf def dijkstra(graph, source, target): permanent = {source: 0} # 永久标号,记录了每个点的最短距离 temporary = {} # 临时标号 sequence = {} # 记录每个顶点的最优前驱节点,用于记录最短路 nodes = graph.keys() # 顶点集合 # 初始化 for node in nodes: if node != source: temporary[node] = inf current_node = source while temporary: # 若临时标号集合不为空,算法继续 neighbor_weight_list = graph[current_node] for n, w in neighbor_weight_list: if permanent[current_node] + w < temporary[n]: temporary[n] = permanent[current_node] + w sequence[n] = current_node min_key = None min_val = 1e6 for k, v in temporary.items(): if v < min_val: min_val = v min_key = k temporary.pop(min_key) permanent[min_key] = min_val current_node = min_key # 从sequence中获取最短路 current = target path = [target] while True: mid = sequence[current] path.append(mid) current = mid if mid == source: break path.reverse() # 返回最短路及距离 return path, permanent[target] if __name__ == "__main__": # 有向图的邻接表,点:【(临界点,权值),(邻接点,权值)】 graph = { 0: [(1, 5), (2, 2)], 1: [(3, 1), (4, 6)], 2: [(3, 6), (5, 8)], 3: [(4, 1), (5, 2)], 4: [(6, 7)], 5: [(6, 3)], 6: [] } # 打印最短路径 print(dijkstra(graph, 0, 6))
输出结果为:
([0, 1, 3, 5, 6], 11)
Dijkstra算法和Floyd算法均为动态规划算法且是一种贪心算法,即进行无方向性的搜索,每一步转移都由计算机选择当前的最优解并生成新的状态,一直到达目标状态为止。由于其满足最优子结构性质,因此求出的最短路径序列的子序列也是最短路径,能够保证解为全局最优解。但当节点数量过大的时候,计算量也是无法接受的,由此诞生了A*算法。
算法步骤:
输入:图和起点source
输出:从source到其他所有顶点的最短距离。【注】如果有负权回路,则不计算该最短距离,没有意义,因为可以穿越负权回路任意次,则最终为负无穷。
# 松弛操作:
if distance[to_node] > distance[from_node] + weight:
distance[to_node] = distance[from_node] + weight
import numpy as np def bellman_ford(adjacent_list, source, target): node_list = adjacent_list.keys() edge_weight = {} sequence = {} for i, j_weight_list in adjacent_list.items(): for j, weight in j_weight_list: edge_weight[i, j] = weight distance = [0 if v == source else np.inf for v in node_list] # 记录起点-所有点的最短距离 for v in range(len(node_list) - 1): for (from_node, to_node), weight in edge_weight.items(): if distance[to_node] > distance[from_node] + weight: distance[to_node] = distance[from_node] + weight sequence[to_node] = from_node # 从sequence中获取最短路 current = target path = [target] while True: mid = sequence[current] path.append(mid) current = mid if mid == source: break path.reverse() # 返回最短路及距离 return path, distance[target] if __name__ == '__main__': # 图的邻接矩阵表示 adjacent_list = { 0: [(1, 5), (2, 2)], 1: [(3, 1), (4, 6)], 2: [(3, 6), (5, 8)], 3: [(4, 1), (5, 2)], 4: [(6, 7)], 5: [(6, 3)], 6: [] } print(bellman_ford(adjacent_list, source=0, target=6))
([0, 1, 3, 5, 6], 11)
参考:
Bellman—Ford算法的队列优化还有一个名字叫做SPFA。
因为应用场景的多样性和复杂性,在路径规划问题中,业务人员不仅想要知道最短路径,还想知道次短路径。比如在地图导航应用中,用户往往想获取最短的几种行程方案,也许耗时最短的方案可能价格昂贵,或者需要用户进行多次换乘,而次短的方案可能更实惠,或者可以直达目的地,提供多条最优线路可以让用户能够根据自己额外的需求(比如时间、费用和舒适度)来做出权衡和决策。
基于这样的应用场景,1959年,Hoffman和Pavley首次提出了K-最短路问题,多年来一直受到业界的广泛关注,虽然现在已经出现了不少求解算法,但还没有一个算法像Dijkstra最短路算法那样得到广泛的认可。一个原因是因为应用场景的多样性和复杂性,还没有什么通用的K-最短路算法在所有场景下都表现良好,因此K-最短路算法仍有很大的优化空间。
Jin Y.Yen在1971年发表了求解K-最短路问题的Yen算法,Yen算法以Dijkstra算法为基础,采用了递推法中的偏离路径的算法思想来逐一求解前K条最短路,适用于计算非负权边的有向无环图中的单源K-最短路。networkx中Yen算法使用如下:
import networkx
def find_k_shortest_paths(source, target, k=3):
return list(islice(networkx.shortest_simple_paths(graph, source, target), k))
Yen算法的优点是易于理解,可以准确地找到图中任意两节点间的k条最短路径,缺点是时间复杂度较高,时间代价较大,主要原因是在求 P i + 1 P_{i+1} Pi+1时,要将 P i P_i Pi上除了终止节点外的所有节点都视为偏离节点,从而在选择偏离节点发展候选路径时占用了大量的时间。
为提高运行速度,后人在此算法的基础上不断改进和发展。比较有效的算法之一是马丁斯(Martins)在1999年提出的MPS算法,其特点是简化了偏离路径的长度计算,在生成候选边时不像Yen算法那样计算每条候选路径的长度,而是要求更新每条弧上的减少长度,只选择长度减少最小的弧作为最短偏离路径,该算法在一般情况下可以提高运行速度,但是在最差的情况下与Yen算法的时间复杂度一样。
导入networkx库
import matplotlib.pyplot as plt
import networkx
数据准备
# 图的邻接矩阵表示 graph_adjacent_list = { 0: [(1, 5), (2, 2)], 1: [(3, 1), (4, 6)], 2: [(3, 6), (5, 8)], 3: [(4, 1), (5, 2)], 4: [(6, 7)], 5: [(6, 3)], 6: [] } # 节点及坐标 node_coordinate = { 0: (0, 3), 1: (1.5, 1.5), 2: (2, 4), 3: (3.5, 3), 4: (4.5, 1), 5: (4.5, 4.5), 6: (6.5, 3) }
创建有向图
# 创建有向图
graph = networkx.DiGraph()
# 添加节点到graph
graph.add_nodes_from(graph_adjacent_list.keys())
# 添加边和权重到graph
src_tgt_weight_list = [(src, tgt, weight) for src, tgt_weight_list in graph_adjacent_list.items() for tgt, weight in tgt_weight_list]
graph.add_weighted_edges_from(src_tgt_weight_list)
# 图形可视化
networkx.draw_networkx(graph, pos=node_coordinate, with_labels=True, alpha=1, )
Floyd算法(Floyd-Warshell算法),Floyd算法, 返回每个点到其他所有点的最短距离
for k, v in networkx.floyd_warshall(graph, weight="weight").items():
print(k, v)
0 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3772AC0>, {0: 0, 1: 5, 2: 2, 3: 6, 4: 7, 5: 8, 6: 11})
1 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF8E00>, {1: 0, 3: 1, 4: 2, 0: inf, 2: inf, 5: 3, 6: 6})
2 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF8F40>, {2: 0, 3: 6, 5: 8, 0: inf, 1: inf, 4: 7, 6: 11})
3 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF9080>, {3: 0, 4: 1, 5: 2, 0: inf, 1: inf, 2: inf, 6: 5})
4 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF91C0>, {4: 0, 6: 7, 0: inf, 1: inf, 2: inf, 3: inf, 5: inf})
5 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF9300>, {5: 0, 6: 3, 0: inf, 1: inf, 2: inf, 3: inf, 4: inf})
6 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF93A0>, {6: 0, 0: inf, 1: inf, 2: inf, 3: inf, 4: inf, 5: inf})
# 使用networkx中的dijkstra算法,查找最短路径
networkx.dijkstra_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# 使用networkx中的bellman-ford算法,查找最短路径
networkx.bellman_ford_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# A*算法
networkx.astar_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# shortest_path()方法查找最短路径,可以选择dijkstra(默认)和 bellman-ford
print(networkx.shortest_path(graph, source=0, target=6, weight='weight', method='dijkstra'))
[0, 1, 3, 5, 6]
# 查找起点-终点的所有路径,距离依次递增
list(networkx.shortest_simple_paths(graph, source=0, target=6, weight='weight'))
[[0, 1, 3, 5, 6],
[0, 2, 5, 6],
[0, 2, 3, 5, 6],
[0, 1, 3, 4, 6],
[0, 2, 3, 4, 6],
[0, 1, 4, 6]]
计算给定起点-其他所有点的最短路径
# 使用dijkstra算法,计算给定起点-其他所有点的最短路径
networkx.single_source_dijkstra_path(graph, source=0, weight="weight")
{0: [0],
1: [0, 1],
2: [0, 2],
3: [0, 1, 3],
5: [0, 1, 3, 5],
4: [0, 1, 3, 4],
6: [0, 1, 3, 5, 6]}
# 使用bellman-ford算法,计算给定起点-其他所有点的最短路径
networkx.single_source_bellman_ford_path(graph, source=0, weight="weight")
{0: [0],
1: [0, 1],
2: [0, 2],
3: [0, 1, 3],
4: [0, 1, 3, 4],
5: [0, 1, 3, 5],
6: [0, 1, 3, 5, 6]}
若要在计算起点-终点的最短路径的同时获得距离,networkx可采用的方法有
single_source_dijkstra(G, source, target=None, cutoff=None, weight="weight")
和single_source_bellman_ford(G, source, target=None, weight="weight")
,若指定起点和终点,则计算起点-终点的最短路径及距离;若指定起点,不指定终点,则计算起点-所有其他点的最短路径及距离。
# 使用single_source_dijkstra(), 计算给定起点-终点的最短路径及距离
networkx.single_source_dijkstra(graph, source=0, target=6, weight='weight')
(11, [0, 1, 3, 5, 6])
# 返回起点-终点的最短路径及距离
networkx.single_source_bellman_ford(graph, source=0, target=6, weight='weight')
(11, [0, 1, 3, 5, 6])
# 使用single_source_dijkstra(), 计算给定起点-所有其他点的最短路径及距离
networkx.single_source_dijkstra(graph, source=0, target=None, weight='weight')
({0: 0, 2: 2, 1: 5, 3: 6, 4: 7, 5: 8, 6: 11},
{0: [0],
1: [0, 1],
2: [0, 2],
3: [0, 1, 3],
5: [0, 1, 3, 5],
4: [0, 1, 3, 4],
6: [0, 1, 3, 5, 6]})
# 使用single_source_bellman_ford(), 计算给定起点-所有其他点的最短路径及距离
networkx.single_source_bellman_ford(graph, source=0, target=None, weight='weight')
({0: 0, 1: 5, 2: 2, 3: 6, 4: 7, 5: 8, 6: 11},
{0: [0],
1: [0, 1],
2: [0, 2],
3: [0, 1, 3],
4: [0, 1, 3, 4],
5: [0, 1, 3, 5],
6: [0, 1, 3, 5, 6]})
# 返回起点-终点的最短路(无权)
networkx.bidirectional_shortest_path(graph, source=0, target=6)
[0, 1, 4, 6]
搜索起点-终点间的所有路径:shortest_simple_paths(G, source, target, weight=None)
list(networkx.shortest_simple_paths(graph, source=0, target=6, weight="weight"))
[[0, 1, 3, 5, 6],
[0, 2, 5, 6],
[0, 2, 3, 5, 6],
[0, 1, 3, 4, 6],
[0, 2, 3, 4, 6],
[0, 1, 4, 6]]
返回结果为所有路径,第一个为最短路径。该方法shortest_simple_paths基于Yen’s Algorithm,
Jin Y. Yen, “Finding the K Shortest Loopless Paths in a Network”, Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716.
如果搜索前k短路径,时间复杂度为 O ( k V 3 ) O(kV^3) O(kV3):
from itertools import islice
def k_shortest_paths(G, source, target, k, weight="weight"):
return list(
islice(networkx.shortest_simple_paths(graph, source, target, weight=weight), k)
)
for path in k_shortest_paths(graph, 0, 6, k=3):
print(path)
[0, 1, 3, 5, 6]
[0, 2, 5, 6]
[0, 2, 3, 5, 6]
参考
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。