赞
踩
在前面介绍的RB-tree红黑树中,可以看出红黑树的插入、查找、删除的平均时间复杂度为O(nlogn)。但这是基于一个假设:输入数据具有随机性。而哈希表/散列表hash table在插入、删除、查找上具有“平均常数时间复杂度”O(1);且不依赖输入数据的随机性。
hash table的实现有线性探测、二次探测、二次散列等实现,SGI的STL是采用开链法(separate chaining)来实现的。大概原理就是在hash table的每一项都是个指针(指向一个链表),叫做bucket。这样的话如果多个key值散列到同一位置,那么就存储到这个位置对应的链表中。如下图所示:
hash table使用了vector来做buckets的容器,容器大小是质数(因为散列函数好多情况下是取余数),实现代码如下:
- G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_hashtable.h 完整列表
- /*
- * Copyright (c) 1996,1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- *
- *
- * Copyright (c) 1994
- * Hewlett-Packard Company
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Hewlett-Packard Company makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- *
- */
-
- /* NOTE: This is an internal header file, included by other STL headers.
- * You should not attempt to use it directly.
- */
-
- #ifndef __SGI_STL_INTERNAL_HASHTABLE_H
- #define __SGI_STL_INTERNAL_HASHTABLE_H
-
- // Hashtable class 用來實作 hashed associative containers
- // hash_set, hash_map, hash_multiset, 和 hash_multimap.
-
- #include <stl_algobase.h>
- #include <stl_alloc.h>
- #include <stl_construct.h>
- #include <stl_tempbuf.h>
- #include <stl_algo.h>
- #include <stl_uninitialized.h>
- #include <stl_function.h>
- #include <stl_vector.h>
- #include <stl_hash_fun.h>
-
- __STL_BEGIN_NAMESPACE
- //hash table中节点的定义,都是public
- template <class Value>
- struct __hashtable_node
- {
- /*
- 用vector来做hash table,为什么还需要next指针?
- 因为SGI 实现的hash table使用了开链法/链接法。
- hash table中的节点可能代表一系列节点。它们以链形式连接。
- 这是所谓的 separate chaining 技巧。
- */
- __hashtable_node* next;
- Value val;
- };
- //先声明 hash table,在 iterator中有用到。
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey, class Alloc = alloc>
- class hashtable;
-
- // 由与 __hashtable_iterator 和 __hashtable_const_iterator 两者会
- // 互相使用,因此必须在下面先做声明,否则编译出错。
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey, class Alloc>
- struct __hashtable_iterator;
-
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey, class Alloc>
- struct __hashtable_const_iterator;
-
- //hash table中的迭代器
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey, class Alloc>
- struct __hashtable_iterator {
- typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
- hashtable;
- typedef __hashtable_iterator<Value, Key, HashFcn,
- ExtractKey, EqualKey, Alloc>
- iterator;
- typedef __hashtable_const_iterator<Value, Key, HashFcn,
- ExtractKey, EqualKey, Alloc>
- const_iterator;
- typedef __hashtable_node<Value> node;
-
- //迭代器类型,只能向前
- typedef forward_iterator_tag iterator_category;
- typedef Value value_type;
- typedef ptrdiff_t difference_type;
- typedef size_t size_type;
- typedef Value& reference;
- typedef Value* pointer;
-
- node* cur; // 迭代器目前所指之节点
- hashtable* ht; // 保持对容器的连接关系,因为可能需要从bucket跳到bucket
-
- __hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}
- //默认构造函数什么也没做
- __hashtable_iterator() {}
- reference operator*() const { return cur->val; }
- #ifndef __SGI_STL_NO_ARROW_OPERATOR
- pointer operator->() const { return &(operator*()); }
- #endif /* __SGI_STL_NO_ARROW_OPERATOR */
- iterator& operator++();
- iterator operator++(int);
- bool operator==(const iterator& it) const { return cur == it.cur; }
- bool operator!=(const iterator& it) const { return cur != it.cur; }
- };
-
-
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey, class Alloc>
- struct __hashtable_const_iterator {
- typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
- hashtable;
- typedef __hashtable_iterator<Value, Key, HashFcn,
- ExtractKey, EqualKey, Alloc>
- iterator;
- typedef __hashtable_const_iterator<Value, Key, HashFcn,
- ExtractKey, EqualKey, Alloc>
- const_iterator;
- typedef __hashtable_node<Value> node;
-
- typedef forward_iterator_tag iterator_category; // 注意
- typedef Value value_type;
- typedef ptrdiff_t difference_type;
- typedef size_t size_type;
- typedef const Value& reference;
- typedef const Value* pointer;
-
- const node* cur;
- const hashtable* ht;
-
- __hashtable_const_iterator(const node* n, const hashtable* tab)
- : cur(n), ht(tab) {}
- __hashtable_const_iterator() {}
- __hashtable_const_iterator(const iterator& it) : cur(it.cur), ht(it.ht) {}
- reference operator*() const { return cur->val; }
- #ifndef __SGI_STL_NO_ARROW_OPERATOR
- pointer operator->() const { return &(operator*()); }
- #endif /* __SGI_STL_NO_ARROW_OPERATOR */
- const_iterator& operator++();
- const_iterator operator++(int);
- bool operator==(const const_iterator& it) const { return cur == it.cur; }
- bool operator!=(const const_iterator& it) const { return cur != it.cur; }
- };
-
- // 注意:假设 long 至少有 32 bits。
- //定义28个素数(大概是2倍关系增长),用来做hash table的大小
- static const int __stl_num_primes = 28;
- static const unsigned long __stl_prime_list[__stl_num_primes] =
- {
- 53, 97, 193, 389, 769,
- 1543, 3079, 6151, 12289, 24593,
- 49157, 98317, 196613, 393241, 786433,
- 1572869, 3145739, 6291469, 12582917, 25165843,
- 50331653, 100663319, 201326611, 402653189, 805306457,
- 1610612741, 3221225473ul, 4294967291ul
- };
-
- //找出28个素数中,最接近n且大于n的那个数
- inline unsigned long __stl_next_prime(unsigned long n)
- {
- const unsigned long* first = __stl_prime_list;
- const unsigned long* last = __stl_prime_list + __stl_num_primes;
- const unsigned long* pos = lower_bound(first, last, n);
- // 以上,lower_bound() 是泛型算法
- // 使用 lower_bound(),序列需先排序。上述数组以排序
- return pos == last ? *(last - 1) : *pos;
- }
- /*
- Value 节点的实值类型
- Key 节点的键值类型
- HashFcn hash function的类型
- EqualKey从节点中取出键值的方法(函数或仿函数)
- EqualKey判断键值是否相同的方法(函数或仿函数)
- */
- template <class Value, class Key, class HashFcn,
- class ExtractKey, class EqualKey,
- class Alloc> // 最上面已经说明:默认使用 alloc 空间配置器。
- class hashtable {
- public:
- //为 template 类型参数重新定义一个名称(貌似没必要)
- typedef Key key_type;
- typedef Value value_type;
- typedef HashFcn hasher;//hash函数
- typedef EqualKey key_equal;
-
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
-
- hasher hash_funct() const { return hash; }
- key_equal key_eq() const { return equals; }
-
- private:
- //以下三个都是 function objects。。、<stl_hash_fun.h>中定义了几个
- //标准类型(如int,c-style string等)的 hasher。
- hasher hash;
- key_equal equals;
- ExtractKey get_key;
-
- typedef __hashtable_node<Value> node;
- typedef simple_alloc<node, Alloc> node_allocator;
-
- vector<node*,Alloc> buckets; // 以 vector 完成
- size_type num_elements;//hash table中节点的个数
-
- public:
- typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
- Alloc>
- iterator;
-
- typedef __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
- Alloc>
- const_iterator;
-
- friend struct
- __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
- friend struct
- __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
-
- public:
- //没有默认的构造函数
- hashtable(size_type n,
- const HashFcn& hf,
- const EqualKey& eql,
- const ExtractKey& ext)
- : hash(hf), equals(eql), get_key(ext), num_elements(0)
- {
- initialize_buckets(n);
- }
-
- hashtable(size_type n,
- const HashFcn& hf,
- const EqualKey& eql)
- : hash(hf), equals(eql), get_key(ExtractKey()), num_elements(0)
- {
- initialize_buckets(n);
- }
-
- hashtable(const hashtable& ht)
- : hash(ht.hash), equals(ht.equals), get_key(ht.get_key), num_elements(0)
- {
- copy_from(ht);
- }
-
- hashtable& operator= (const hashtable& ht)
- {
- if (&ht != this) { //防止自身赋值
- clear(); // 先清除自己
- hash = ht.hash; // 以下三个动作,将三份data members 复制过来。
- equals = ht.equals;
- get_key = ht.get_key;
- copy_from(ht); // 完整赋值整个 hash table的内容。
- }
- return *this;
- }
-
- ~hashtable() { clear(); }
-
- size_type size() const { return num_elements; }
- size_type max_size() const { return size_type(-1); }
- bool empty() const { return size() == 0; }
-
- void swap(hashtable& ht)
- {
- __STD::swap(hash, ht.hash);
- __STD::swap(equals, ht.equals);
- __STD::swap(get_key, ht.get_key);
- buckets.swap(ht.buckets);
- __STD::swap(num_elements, ht.num_elements);
- }
-
- iterator begin()
- {
- for (size_type n = 0; n < buckets.size(); ++n)
- //找出第一个被使用的节点,此即 begin iterator。
- if (buckets[n])
- return iterator(buckets[n], this);
- return end();
- }
-
- //最后被使用节点的下个位置,所以使用0来初始化迭代器
- iterator end() { return iterator(0, this); }
-
- const_iterator begin() const
- {
- for (size_type n = 0; n < buckets.size(); ++n)
- if (buckets[n])
- return const_iterator(buckets[n], this);
- return end();
- }
-
- const_iterator end() const { return const_iterator(0, this); }
-
- friend bool
- operator== __STL_NULL_TMPL_ARGS (const hashtable&, const hashtable&);
-
- public:
-
- // bucket 个数即 buckets vector 的大小
- size_type bucket_count() const { return buckets.size(); }
-
- //以目前情况(不重建表格),总共可以有多少个 buckets
- size_type max_bucket_count() const
- { return __stl_prime_list[__stl_num_primes - 1]; }
-
- // 某一个 bucket (内含一个list) 容纳多少个元素
- size_type elems_in_bucket(size_type bucket) const
- {
- size_type result = 0;
- for (node* cur = buckets[bucket]; cur; cur = cur->next)
- result += 1;
- return result;
- }
-
- //安插元素,不允许重复
- pair<iterator, bool> insert_unique(const value_type& obj)
- {
- resize(num_elements + 1); // 判断是否需要重建表格,如果需要就填充
- return insert_unique_noresize(obj);
- }
-
- // 安插元素,允许重复
- iterator insert_equal(const value_type& obj)
- {
- resize(num_elements + 1);
- return insert_equal_noresize(obj);
- }
-
- pair<iterator, bool> insert_unique_noresize(const value_type& obj);
- iterator insert_equal_noresize(const value_type& obj);
-
- #ifdef __STL_MEMBER_TEMPLATES
- //插入两个迭代器之间的元素[f l)
- template <class InputIterator>
- void insert_unique(InputIterator f, InputIterator l)
- {
- insert_unique(f, l, iterator_category(f));
- }
-
- template <class InputIterator>
- void insert_equal(InputIterator f, InputIterator l)
- {
- insert_equal(f, l, iterator_category(f));
- }
-
- template <class InputIterator>
- void insert_unique(InputIterator f, InputIterator l,
- input_iterator_tag)
- {
- for ( ; f != l; ++f)
- insert_unique(*f);
- }
-
- template <class InputIterator>
- void insert_equal(InputIterator f, InputIterator l,
- input_iterator_tag)
- {
- for ( ; f != l; ++f)
- insert_equal(*f);
- }
-
- template <class ForwardIterator>
- void insert_unique(ForwardIterator f, ForwardIterator l,
- forward_iterator_tag)
- {
- size_type n = 0;
- distance(f, l, n);//判断两个迭代器的距离,n是引用传递
- resize(num_elements + n); // 判断(并实施)表格的重建
- for ( ; n > 0; --n, ++f)
- insert_unique_noresize(*f); // 一一安插新元素
- }
-
- template <class ForwardIterator>
- void insert_equal(ForwardIterator f, ForwardIterator l,
- forward_iterator_tag)
- {
- size_type n = 0;
- distance(f, l, n);
- resize(num_elements + n);
- for ( ; n > 0; --n, ++f)
- insert_equal_noresize(*f); // 一一安插新元素
- }
-
- #else /* __STL_MEMBER_TEMPLATES */
- void insert_unique(const value_type* f, const value_type* l)
- {
- //可以直接计算迭代器之间的距离,应该是rando access iterator
- size_type n = l - f;
- resize(num_elements + n);
- for ( ; n > 0; --n, ++f)
- insert_unique_noresize(*f);
- }
-
- void insert_equal(const value_type* f, const value_type* l)
- {
- size_type n = l - f;
- resize(num_elements + n);
- for ( ; n > 0; --n, ++f)
- insert_equal_noresize(*f);
- }
-
- void insert_unique(const_iterator f, const_iterator l)
- {
- size_type n = 0;
- distance(f, l, n);
- resize(num_elements + n);
- for ( ; n > 0; --n, ++f)
- insert_unique_noresize(*f);
- }
-
- void insert_equal(const_iterator f, const_iterator l)
- {
- size_type n = 0;
- distance(f, l, n);
- resize(num_elements + n);
- for ( ; n > 0; --n, ++f)
- insert_equal_noresize(*f);
- }
- #endif /*__STL_MEMBER_TEMPLATES */
-
- reference find_or_insert(const value_type& obj);
-
- iterator find(const key_type& key)
- {
- size_type n = bkt_num_key(key); // 首先找到落在哪个bucket内
- node* first;
- //从bucket list的头开始,一一对比每个元素的键值。
- for ( first = buckets[n];
- first && !equals(get_key(first->val), key);
- first = first->next)
- {}
- return iterator(first, this);
- }
-
- const_iterator find(const key_type& key) const
- {
- size_type n = bkt_num_key(key);
- const node* first;
- for ( first = buckets[n];
- first && !equals(get_key(first->val), key);
- first = first->next)
- {}
- return const_iterator(first, this);
- }
-
- //查看hash table中含有多少个值为key的元素
- size_type count(const key_type& key) const
- {
- const size_type n = bkt_num_key(key);
- size_type result = 0;
-
- // 以下,从bucket list 的头开始,一一比对每个素的键值。比对成功就累加1。
- for (const node* cur = buckets[n]; cur; cur = cur->next)
- if (equals(get_key(cur->val), key))
- ++result;
- return result;
- }
-
- pair<iterator, iterator> equal_range(const key_type& key);
- pair<const_iterator, const_iterator> equal_range(const key_type& key) const;
-
- size_type erase(const key_type& key);
- void erase(const iterator& it);
- void erase(iterator first, iterator last);
-
- void erase(const const_iterator& it);
- void erase(const_iterator first, const_iterator last);
-
- void resize(size_type num_elements_hint);
- void clear();
-
- private:
- // 寻找STL中提供的下一个质数
- size_type next_size(size_type n) const { return __stl_next_prime(n); }
-
- // 注意,hash_vec 和 hash_map 都將其底層的 hash table 的初始大小預設為 100
- // hash_vec 和 hash_map 都将底层的 hash table初始化大小预设为100
- void initialize_buckets(size_type n)
- {
- //例如:传入100,返回193。以下首先保留193个元素空间,然后将其全部填0。
- //例如:传入50,返回53。以下首先保留53个元素空间,然后将其全部填0。
- const size_type n_buckets = next_size(n);
-
- buckets.reserve(n_buckets);
- buckets.insert(buckets.end(), n_buckets, (node*) 0);
- num_elements = 0;
- }
-
- size_type bkt_num_key(const key_type& key) const
- {
- return bkt_num_key(key, buckets.size());
- }
-
- size_type bkt_num(const value_type& obj) const
- {
- return bkt_num_key(get_key(obj));
- }
-
- size_type bkt_num_key(const key_type& key, size_t n) const
- {
- return hash(key) % n;
- }
-
- size_type bkt_num(const value_type& obj, size_t n) const
- {
- return bkt_num_key(get_key(obj), n);
- }
-
- node* new_node(const value_type& obj)
- {
- node* n = node_allocator::allocate();//配置空间
- n->next = 0;//指针next设置为NULL
- __STL_TRY {
- construct(&n->val, obj);//构建元素
- return n;
- }
- //commit or rollback
- __STL_UNWIND(node_allocator::deallocate(n));
- }
-
- void delete_node(node* n)
- {
- destroy(&n->val);//析构
- node_allocator::deallocate(n);//释放空间
- }
-
- void erase_bucket(const size_type n, node* first, node* last);
- void erase_bucket(const size_type n, node* last);
-
- void copy_from(const hashtable& ht);
-
- };
-
- template <class V, class K, class HF, class ExK, class EqK, class A>
- __hashtable_iterator<V, K, HF, ExK, EqK, A>&
- __hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
- {
- const node* old = cur;
- cur = cur->next; // 如果存在,就是它。否则进入以下 if 流程
- if (!cur) {
- // 根据原值,重新定位。从该位置(bucket)的下一个位置找起。
- size_type bucket = ht->bkt_num(old->val);
- while (!cur && ++bucket < ht->buckets.size()) // 注意,prefix operator++
- cur = ht->buckets[bucket];
- }
- return *this;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class A>
- inline __hashtable_iterator<V, K, HF, ExK, EqK, A>
- __hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++(int)
- {
- iterator tmp = *this;
- ++*this; // 调用 operator++()
- return tmp;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class A>
- __hashtable_const_iterator<V, K, HF, ExK, EqK, A>&
- __hashtable_const_iterator<V, K, HF, ExK, EqK, A>::operator++()
- {
- const node* old = cur;
- cur = cur->next;
- if (!cur) {
- size_type bucket = ht->bkt_num(old->val);
- while (!cur && ++bucket < ht->buckets.size())
- cur = ht->buckets[bucket];
- }
- return *this;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class A>
- inline __hashtable_const_iterator<V, K, HF, ExK, EqK, A>
- __hashtable_const_iterator<V, K, HF, ExK, EqK, A>::operator++(int)
- {
- const_iterator tmp = *this;
- ++*this;
- return tmp;
- }
-
- #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline forward_iterator_tag
- iterator_category(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return forward_iterator_tag();
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline V* value_type(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return (V*) 0;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline hashtable<V, K, HF, ExK, EqK, All>::difference_type*
- distance_type(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return (hashtable<V, K, HF, ExK, EqK, All>::difference_type*) 0;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline forward_iterator_tag
- iterator_category(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return forward_iterator_tag();
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline V*
- value_type(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return (V*) 0;
- }
-
- template <class V, class K, class HF, class ExK, class EqK, class All>
- inline hashtable<V, K, HF, ExK, EqK, All>::difference_type*
- distance_type(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
- {
- return (hashtable<V, K, HF, ExK, EqK, All>::difference_type*) 0;
- }
-
- #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
- //判断两个hash table是否相等(两个hasn table的 buckets相同,且
- //bucket对应的list相同)
- template <class V, class K, class HF, class Ex, class Eq, class A>
- bool operator==(const hashtable<V, K, HF, Ex, Eq, A>& ht1,
- const hashtable<V, K, HF, Ex, Eq, A>& ht2)
- {
- typedef typename hashtable<V, K, HF, Ex, Eq, A>::node node;
- if (ht1.buckets.size() != ht2.buckets.size())
- return false;
- for (int n = 0; n < ht1.buckets.size(); ++n) {
- node* cur1 = ht1.buckets[n];
- node* cur2 = ht2.buckets[n];
- for ( ; cur1 && cur2 && cur1->val == cur2->val;
- cur1 = cur1->next, cur2 = cur2->next)
- {}
- if (cur1 || cur2)//如果cur1或cur2有一个不等于0(没有指向最后位置的下一个位置)
- return false;
- }
- return true;
- }
-
- #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
-
- template <class Val, class Key, class HF, class Extract, class EqKey, class A>
- inline void swap(hashtable<Val, Key, HF, Extract, EqKey, A>& ht1,
- hashtable<Val, Key, HF, Extract, EqKey, A>& ht2) {
- ht1.swap(ht2);
- }
-
- #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
-
- //在不重建表格的情况下安插新节点。键值不允许重复。返回pair。第二个参数指出
- //插入是否成功
- template <class V, class K, class HF, class Ex, class Eq, class A>
- pair<typename hashtable<V, K, HF, Ex, Eq, A>::iterator, bool>
- hashtable<V, K, HF, Ex, Eq, A>::insert_unique_noresize(const value_type& obj)
- {
- const size_type n = bkt_num(obj); // 決定obj位于哪个buckets中
- node* first = buckets[n]; // 令 first 指向 bucket 对应串列头部
-
- // 如果 buckets[n] 已被占用,此时first 将不为0,于是进入以下循环,
- // 遍历bucket对应的整个链表
- for (node* cur = first; cur; cur = cur->next)
- if (equals(get_key(cur->val), get_key(obj)))
- // 如果发现链表中的某键值相同,就不安插,立刻回返。
- return pair<iterator, bool>(iterator(cur, this), false);
-
- //离开以上循环(或没进入循环),first指向指向bucket所指链表的头部节点
- node* tmp = new_node(obj); // 生成新节点并赋值
- tmp->next = first; //更改新节点指针
- buckets[n] = tmp; // 新节点称为bucket链表第一个节点
- ++num_elements; // 节点个诉累加1
- return pair<iterator, bool>(iterator(tmp, this), true);
- }
-
- //在不重建表格的情况下安插新节点。键值不允许重复。
- template <class V, class K, class HF, class Ex, class Eq, class A>
- typename hashtable<V, K, HF, Ex, Eq, A>::iterator
- hashtable<V, K, HF, Ex, Eq, A>::insert_equal_noresize(const value_type& obj)
- {
- const size_type n = bkt_num(obj);
- node* first = buckets[n];
-
- // 如果 buckets[n] 已被佔用,此時first 將不為0,於是進入以下迴圈,
- // 走過 bucket 所對應的整個串列。
- for (node* cur = first; cur; cur = cur->next)
- if (equals(get_key(cur->val), get_key(obj))) {
- // 如果发现链表中键值相同,马上插入,然后返回
- //插到键值相同节点的后面
- node* tmp = new_node(obj);
- tmp->next = cur->next;
- cur->next = tmp;
- ++num_elements;
- return iterator(tmp, this); // 返回迭代器,指向新插入的节点
- }
-
- // 运行到此处,没有键值重复。
- node* tmp = new_node(obj);
- tmp->next = first;
- buckets[n] = tmp;
- ++num_elements;
- return iterator(tmp, this);
- }
-
- //如果存在obj节点则返回指向其节点的迭代器,否则插入
- template <class V, class K, class HF, class Ex, class Eq, class A>
- typename hashtable<V, K, HF, Ex, Eq, A>::reference
- hashtable<V, K, HF, Ex, Eq, A>::find_or_insert(const value_type& obj)
- {
- resize(num_elements + 1);
-
- size_type n = bkt_num(obj);
- node* first = buckets[n];
-
- for (node* cur = first; cur; cur = cur->next)
- if (equals(get_key(cur->val), get_key(obj)))
- return cur->val;
-
- node* tmp = new_node(obj);
- tmp->next = first;
- buckets[n] = tmp;
- ++num_elements;
- return tmp->val;
- }
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- pair<typename hashtable<V, K, HF, Ex, Eq, A>::iterator,
- typename hashtable<V, K, HF, Ex, Eq, A>::iterator>
- hashtable<V, K, HF, Ex, Eq, A>::equal_range(const key_type& key)
- {
- typedef pair<iterator, iterator> pii;
- const size_type n = bkt_num_key(key);
-
- for (node* first = buckets[n]; first; first = first->next) {
- if (equals(get_key(first->val), key)) {
- for (node* cur = first->next; cur; cur = cur->next)
- if (!equals(get_key(cur->val), key))
- return pii(iterator(first, this), iterator(cur, this));
- for (size_type m = n + 1; m < buckets.size(); ++m)
- if (buckets[m])
- return pii(iterator(first, this),
- iterator(buckets[m], this));
- return pii(iterator(first, this), end());
- }
- }
- return pii(end(), end());
- }
- //查找键值等于key的区间。pair两个元素类型都是迭代器类型
- //一个指向区间起始位置,一个指向区间结束的下一个位置。
- template <class V, class K, class HF, class Ex, class Eq, class A>
- pair<typename hashtable<V, K, HF, Ex, Eq, A>::const_iterator,
- typename hashtable<V, K, HF, Ex, Eq, A>::const_iterator>
- hashtable<V, K, HF, Ex, Eq, A>::equal_range(const key_type& key) const
- {
- typedef pair<const_iterator, const_iterator> pii;
- const size_type n = bkt_num_key(key);//先找到在哪个 buckets
- //bucket对应的链表中查找
- for (const node* first = buckets[n] ; first; first = first->next) {
- if (equals(get_key(first->val), key)) {//找到键值为key的起始位置
- for (const node* cur = first->next; cur; cur = cur->next)
- if (!equals(get_key(cur->val), key))
- return pii(const_iterator(first, this),
- const_iterator(cur, this));
-
- //运行到此处,说明bucket对应的链表中尾节点也是键值为key节点
- //那么下一个位置就是 buckets中可用的bucket链表头节点
- for (size_type m = n + 1; m < buckets.size(); ++m)
- if (buckets[m])
- return pii(const_iterator(first, this),
- const_iterator(buckets[m], this));
- //后面的 buckets都没用
- return pii(const_iterator(first, this), end());
- }
- }
- // hash table没有key值节点
- return pii(end(), end());
- }
- //擦除键值为key的节点
- template <class V, class K, class HF, class Ex, class Eq, class A>
- typename hashtable<V, K, HF, Ex, Eq, A>::size_type
- hashtable<V, K, HF, Ex, Eq, A>::erase(const key_type& key)
- {
- const size_type n = bkt_num_key(key);
- node* first = buckets[n];//找到对应bucket链表头节点
- size_type erased = 0;
-
- if (first) {
- node* cur = first;//这里要保存前一个节点,因为是单向链表
- node* next = cur->next;
- //如果链表中多于一个节点
- while (next) {
- if (equals(get_key(next->val), key)) {
- cur->next = next->next;
- delete_node(next);
- next = cur->next;
- ++erased;
- --num_elements;
- }
- else {
- cur = next;
- next = cur->next;
- }
- }
- //链表中只有一个节点
- if (equals(get_key(first->val), key)) {
- buckets[n] = first->next;
- delete_node(first);
- ++erased;
- --num_elements;
- }
- }
- return erased;
- }
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::erase(const iterator& it)
- {
- if (node* const p = it.cur) {
- const size_type n = bkt_num(p->val);
- node* cur = buckets[n];
-
- if (cur == p) {
- buckets[n] = cur->next;
- delete_node(cur);
- --num_elements;
- }
- else {
- node* next = cur->next;
- while (next) {
- if (next == p) {
- cur->next = next->next;
- delete_node(next);
- --num_elements;
- break;
- }
- else {
- cur = next;
- next = cur->next;
- }
- }
- }
- }
- }
- //擦除两个迭代器之间的元素
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::erase(iterator first, iterator last)
- {
- size_type f_bucket = first.cur ? bkt_num(first.cur->val) : buckets.size();
- size_type l_bucket = last.cur ? bkt_num(last.cur->val) : buckets.size();
-
- if (first.cur == last.cur)
- return;
- else if (f_bucket == l_bucket)
- erase_bucket(f_bucket, first.cur, last.cur);
- else {
- erase_bucket(f_bucket, first.cur, 0);
- for (size_type n = f_bucket + 1; n < l_bucket; ++n)
- erase_bucket(n, 0);
- if (l_bucket != buckets.size())
- erase_bucket(l_bucket, last.cur);
- }
- }
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- inline void
- hashtable<V, K, HF, Ex, Eq, A>::erase(const_iterator first,
- const_iterator last)
- {
- erase(iterator(const_cast<node*>(first.cur),
- const_cast<hashtable*>(first.ht)),
- iterator(const_cast<node*>(last.cur),
- const_cast<hashtable*>(last.ht)));
- }
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- inline void
- hashtable<V, K, HF, Ex, Eq, A>::erase(const const_iterator& it)
- {
- erase(iterator(const_cast<node*>(it.cur),
- const_cast<hashtable*>(it.ht)));
- }
- //重新配置 hash table的大小
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::resize(size_type num_elements_hint)
- {
- const size_type old_n = buckets.size();//原来hash table大小
- if (num_elements_hint > old_n) { // 确定真的需要重新配置
- const size_type n = next_size(num_elements_hint); // 找出下一个质数
-
- //下个这个判断没必要了吧?因为n>=num_elements_hint,而num_elements_hint>=old_n
- if (n > old_n) {
- vector<node*, A> tmp(n, (node*) 0); // 设立新的 buckets
- __STL_TRY {
- // 下面处理每一个旧的bucket
- for (size_type bucket = 0; bucket < old_n; ++bucket) {
- node* first = buckets[bucket]; // 指向节点所对应链表的起始节点
- // 以下處理每一個舊bucket 所含(串列)的每一個節點
- // 一下处理bucketliability的每一个节点
- while (first) { // 链表没结束
- // 以下找出节点落在哪一个新bucket 內
- size_type new_bucket = bkt_num(first->val, n);
- // 以下四个动作颇为巧妙
- // (1) 令旧 bucket 指向其所对应之链表的下一个节点(以便迭代处理)
- buckets[bucket] = first->next;
- // (2)(3) 将当前节点安插到新的bucket内,成为其对应链表的第一个节点。
- first->next = tmp[new_bucket];
- tmp[new_bucket] = first;
- // (4) 回到旧bucket 所指的待处理链表,准备处理下一个节点
- first = buckets[bucket];
- }
- }
- buckets.swap(tmp); // vector::swap。新旧 buckets 对调。
- // 注意,对调两方如果大小不同,大的会变小,小的会变大。
- // tmp为局部作用域,离开其作用域自动释放
- }
- # ifdef __STL_USE_EXCEPTIONS
- //commit or rollback
- catch(...) {
- for (size_type bucket = 0; bucket < tmp.size(); ++bucket) {
- while (tmp[bucket]) {
- node* next = tmp[bucket]->next;
- delete_node(tmp[bucket]);
- tmp[bucket] = next;
- }
- }
- throw;
- }
- # endif /* __STL_USE_EXCEPTIONS */
- }
- }
- }
- //擦除hash table对应第n个bucket中的一段元素[first last)
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::erase_bucket(const size_type n,
- node* first, node* last)
- {
- node* cur = buckets[n];
- if (cur == first)
- erase_bucket(n, last);
- else {
- node* next;
- for (next = cur->next; next != first; cur = next, next = cur->next)
- ;
- //下面应该是 while(next!=last)吧?否则last在这没用
- while (next) {
- cur->next = next->next;
- delete_node(next);
- next = cur->next;
- --num_elements;
- }
- }
- }
- 擦除hash table对应第n个bucket中的一段元素[buckets[n] last)
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void
- hashtable<V, K, HF, Ex, Eq, A>::erase_bucket(const size_type n, node* last)
- {
- node* cur = buckets[n];
- while (cur != last) {
- node* next = cur->next;
- delete_node(cur);
- cur = next;
- buckets[n] = cur;
- --num_elements;
- }
- }
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::clear()
- {
- // 针对每一个 bucket.
- for (size_type i = 0; i < buckets.size(); ++i) {
- node* cur = buckets[i];
- // 将 bucket list 中的每一个节点刪除掉
- while (cur != 0) {
- node* next = cur->next;
- delete_node(cur);
- cur = next;
- }
- buckets[i] = 0; // 令bucket 內容为 null 指针
- }
- num_elements = 0; // 令总节点个数0
-
- // 注意,buckets vector 并未释放掉,仍保有原来大小。
- }
-
-
- template <class V, class K, class HF, class Ex, class Eq, class A>
- void hashtable<V, K, HF, Ex, Eq, A>::copy_from(const hashtable& ht)
- {
- // 先清除己方的buckets vector. 调用vector::clear.
- buckets.clear();
-
- //如果己方空间大于对方,就不懂,否则增大己方空间等于对方
- buckets.reserve(ht.buckets.size());
-
- //从己方的buckets vector尾端开始,安插n个元素,其值为NULL指针。
- //注意,此时buckets vector为空,所以所谓尾端就是起始处
- buckets.insert(buckets.end(), ht.buckets.size(), (node*) 0);
- __STL_TRY {
- // 针对 buckets vector
- for (size_type i = 0; i < ht.buckets.size(); ++i) {
- //复制 vector 的每一个元素(是个指针,指向hash table节点)
-
- //注意下面if语句,是先赋值再判断,它等价于
- //const node* cur = ht.buckets[i]; if(cur)
- if (const node* cur = ht.buckets[i]) {
- node* copy = new_node(cur->val);
- buckets[i] = copy;
-
- // 针对每一个 bucket list,复制每一个节点
- for (node* next = cur->next; next; cur = next, next = cur->next) {
- copy->next = new_node(next->val);
- copy = copy->next;
- }
- }
- }
- num_elements = ht.num_elements; // 重新设置节点个数(hashtable 的大小)
- }
- __STL_UNWIND(clear());
- }
-
- __STL_END_NAMESPACE
-
- #endif /* __SGI_STL_INTERNAL_HASHTABLE_H */
-
- // Local Variables:
- // mode:C++
- // End:
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。