赞
踩
背景:树莓派要用英特尔神经计算棒,先要将pytorch训练生成的.pt文件转换为ONNX,再转换为IR,本来直接在树莓派上的原生树莓派系统尝试,明明已经显示输出了模型详细信息,可文件夹中没有出现.onnx文件,于是直接拿windows系统新建有pytorch的环境来尝试,尝试成功。
转换代码
注意点:要根据你的代码进行修改,修改最初的包等
- import torch
- from models.with_mobilenet import PoseEstimationWithMobileNet
- from modules.load_state import load_state
- from action_detect.net import NetV2
-
- def convert_onnx():
- print('start!!!')
-
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- #model_path = '/home/pi/xg_openpose_fall_detect-master/action_detect/checkPoint/action.pt' #这是我们要转换的模型
- #backone = mobilenetv3_large(width_mult=0.75)#mobilenetv3_small() mobilenetv3_small(width_mult=0.75) mobilenetv3_large(width_mult=0.75)
- model = NetV2().to(device)
- checkpoint = torch.load(r'E:/xg_openpose_fall_detect-master/action_detect/checkPoint/action.pt', map_location='cpu')
- model.load_state_dict(checkpoint)
- #model.load_state_dict(torch.load(model_path, map_location=device)['model'])
-
- model.to(device)
- model.eval()
- dummy_input = torch.randn(1, 16384).to(device)#输入大小 #data type nchw
- #onnx_path = '/home/pi/xg_openpose_fall_detect-master/action_detect/checkPoint/action.onnx'
- onnx_path = 'E:/xg_openpose_fall_detect-master/action_detect/checkPoint/action.onnx'
- print("----- pt模型导出为onnx模型 -----")
- output_name = "action.onnx"
- torch.onnx.export(model, dummy_input,onnx_path,export_params=True, input_names=['input'], output_names=['output'])
- print('finish!!!')
-
-
- if __name__ == "__main__" :
- convert_onnx()
-

结果
并保存在定义位置
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。