赞
踩
括号匹配问题是对于栈的应用,那么如何利用栈解决括号匹配的问题呢?
一个表达式中利用圆括号或方括号及花括号来表示运算的优先级,将这些括号提取出来就构成了括号序列
例如:表达式[(a+b)*c]-[e-f] 其括号序列为[()][]
合法的括号序列称为匹配序列,不合法的括号序列称为不匹配序列
匹配序列示例: ([()]) [][]() ()[()]
不匹配序列示例:([()] ][]() (][()]
1.计算机从左往右扫描表达式,扫描至左括号时,将该左括号压入栈中。
2.直至遇见右括号,将栈中栈底的括号与该右括号进行比较,若结果为匹配,则继续进行扫描。若结果为不匹配,则该序列不合法。
3.若全部元素遍历完毕,栈中无剩余元素,则该序列合法;栈中仍然存在元素,则该序列不合法。
1.初始化空栈,判断1[为左括号,将1入栈
2.判断2(,2仍为左括号,将2入栈
3.判断3),3为右括号,与栈顶元素(匹配,匹配成功,2出栈
4.判断4],4为右括号,与栈顶元素1[进行匹配,匹配成功,1出栈
5.判断5[,5为左括号,将5入栈
6.判断6],6为右括号,与栈顶元素匹配,匹配成功,5出栈
7.序列遍历完毕,且栈中无元素,判断该序列为合法序列
(该案例及图片来自于知乎“半颗糖逗”)
- #include <stdio.h>
- #include <malloc.h>
-
- #define STACK_MAX_SIZE 10
-
- /**
- * Linear stack of integers. The key is data.
- */
- typedef struct CharStack {
- int top;
-
- int data[STACK_MAX_SIZE]; //The maximum length is fixed.
- } *CharStackPtr;
-
- /**
- * Output the stack.
- */
- void outputStack(CharStackPtr paraStack) {
- for (int i = 0; i <= paraStack->top; i ++) {
- printf("%c ", paraStack->data[i]);
- }// Of for i
- printf("\r\n");
- }// Of outputStack
-
- /**
- * Initialize an empty char stack. No error checking for this function.
- * @param paraStackPtr The pointer to the stack. It must be a pointer to change the stack.
- * @param paraValues An int array storing all elements.
- */
- CharStackPtr charStackInit() {
- CharStackPtr resultPtr = (CharStackPtr)malloc(sizeof(struct CharStack));
- resultPtr->top = -1;
-
- return resultPtr;
- }//Of charStackInit
-
- /**
- * Push an element to the stack.
- * @param paraValue The value to be pushed.
- */
- void push(CharStackPtr paraStackPtr, int paraValue) {
- // Step 1. Space check.
- if (paraStackPtr->top >= STACK_MAX_SIZE - 1) {
- printf("Cannot push element: stack full.\r\n");
- return;
- }//Of if
-
- // Step 2. Update the top.
- paraStackPtr->top ++;
-
- // Step 3. Push element.
- paraStackPtr->data[paraStackPtr->top] = paraValue;
- }// Of push
-
- /**
- * Pop an element from the stack.
- * @return The popped value.
- */
- char pop(CharStackPtr paraStackPtr) {
- // Step 1. Space check.
- if (paraStackPtr->top < 0) {
- printf("Cannot pop element: stack empty.\r\n");
- return '\0';
- }//Of if
-
- // Step 2. Update the top.
- paraStackPtr->top --;
-
- // Step 3. Push element.
- return paraStackPtr->data[paraStackPtr->top + 1];
- }// Of pop
-
- /**
- * Test the push function.
- */
- void pushPopTest() {
- printf("---- pushPopTest begins. ----\r\n");
- char ch;
-
- // Initialize.
- CharStackPtr tempStack = charStackInit();
- printf("After initialization, the stack is: ");
- outputStack(tempStack);
-
- // Pop.
- for (ch = 'a'; ch < 'm'; ch ++) {
- printf("Pushing %c.\r\n", ch);
- push(tempStack, ch);
- outputStack(tempStack);
- }//Of for i
-
- // Pop.
- for (int i = 0; i < 3; i ++) {
- ch = pop(tempStack);
- printf("Pop %c.\r\n", ch);
- outputStack(tempStack);
- }//Of for i
-
- printf("---- pushPopTest ends. ----\r\n");
- }// Of pushPopTest
-
- /**
- * Is the bracket matching?
- *
- * @param paraString The given expression.
- * @return Match or not.
- */
- bool bracketMatching(char* paraString, int paraLength) {
- // Step 1. Initialize the stack through pushing a '#' at the bottom.
- CharStackPtr tempStack = charStackInit();
- push(tempStack, '#');
- char tempChar, tempPopedChar;
-
- // Step 2. Process the string.
- for (int i = 0; i < paraLength; i++) {
- tempChar = paraString[i];
-
- switch (tempChar) {
- case '(':
- case '[':
- case '{':
- push(tempStack, tempChar);
- break;
- case ')':
- tempPopedChar = pop(tempStack);
- if (tempPopedChar != '(') {
- return false;
- } // Of if
- break;
- case ']':
- tempPopedChar = pop(tempStack);
- if (tempPopedChar != '[') {
- return false;
- } // Of if
- break;
- case '}':
- tempPopedChar = pop(tempStack);
- if (tempPopedChar != '{') {
- return false;
- } // Of if
- break;
- default:
- // Do nothing.
- break;
- }// Of switch
- } // Of for i
-
- tempPopedChar = pop(tempStack);
- if (tempPopedChar != '#') {
- return true;
- } // Of if
-
- return true;
- }// Of bracketMatching
-
- /**
- * Unit test.
- */
- void bracketMatchingTest() {
- char* tempExpression = "[2 + (1 - 3)] * 4";
- bool tempMatch = bracketMatching(tempExpression, 17);
- printf("Is the expression '%s' bracket matching? %d \r\n", tempExpression, tempMatch);
-
-
- tempExpression = "( ) )";
- tempMatch = bracketMatching(tempExpression, 6);
- printf("Is the expression '%s' bracket matching? %d \r\n", tempExpression, tempMatch);
-
- tempExpression = "()()(())";
- tempMatch = bracketMatching(tempExpression, 8);
- printf("Is the expression '%s' bracket matching? %d \r\n", tempExpression, tempMatch);
-
- tempExpression = "({}[])";
- tempMatch = bracketMatching(tempExpression, 6);
- printf("Is the expression '%s' bracket matching? %d \r\n", tempExpression, tempMatch);
-
-
- tempExpression = ")(";
- tempMatch = bracketMatching(tempExpression, 2);
- printf("Is the expression '%s' bracket matching? %d \r\n", tempExpression, tempMatch);
- }// Of bracketMatchingTest
-
- /**
- The entrance.
- */
- void main() {
- // pushPopTest();
- bracketMatchingTest();
- }// Of main
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
(该代码誊抄自于闵帆老师)
- Is the expression '[2 + (1 - 3)] * 4' bracket matching? 1
- Is the expression '( ) )' bracket matching? 0
- Is the expression '()()(())' bracket matching? 1
- Is the expression '({}[])' bracket matching? 1
- Is the expression ')(' bracket matching? 0
- Press any key to continue
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。