赞
踩
参数
算法流程
参数初始化
x
i
(
0
)
=
x
i
L
+
r
a
n
d
(
0
,
1
)
⋅
(
x
i
U
−
x
i
L
)
x_{\text{i}}(0)=x_{\text{i}}^L+rand(0,1)\cdot(x_{\text{i}}^U-x_{\text{i}}^L)
xi(0)=xiL+rand(0,1)⋅(xiU−xiL)
搜索(现有解随机增减)
{
Y
=
{
y
1
,
y
2
,
⋯
,
y
D
}
;
z
i
=
y
i
y
1
2
+
y
2
2
+
⋯
+
y
D
2
;
X
(
K
+
1
)
=
X
(
K
)
+
T
(
K
+
1
)
⋅
Z
\left\{
判断优劣判断当前解与现存最优解
判断迭代条件是否完成
温度是否足够低 or 目标函数最后小(大);
流程总结
6.示例代码
clear close all clc D = 10; X_Min = -20; X_Max = 20; L = 500; % 每一个温度下的迭代次数 alpha = 0.998; % T_Next = T_Current*h S0 = 10; % 变异算子 T0 = 10000; % 初始温度 T = T0; error_Thre = 1e-8; % 代价函数阈值 T_Thre = 0.001; K = 0.6; % Metropolis准则系数 % 迭代次数初始化 iter = 1; iter_Max = log(T_Thre/T0)/log(alpha); % iter_Max = T0/T_Thre; % 参数初始化 Current_X = rand(1, D) .* (X_Max - X_Min) + X_Min; Current_X_Fitness = Fitness(Current_X); Pre_X = Current_X; Pre_X_Fitness = Current_X_Fitness; Best_X = Current_X; MinFitness_List = zeros(1,floor(iter_Max)+100); MinFitness_List(1) = Fitness(Best_X); Fitness_List = zeros(1,floor(iter_Max)+100); Fitness_List(1) = MinFitness_List(1); % 与进度条有关的东西 waitbarinter = iter_Max/100; tic h = waitbar(0, ['已完成:0% 运算中...用时:', num2str(toc)]); while (MinFitness_List(iter) > error_Thre) && (T > T_Thre) iter = iter+1; % 1.简易模拟退火 T = alpha * T; % % 2. 经典模拟退火 % T = T0/log10(iter); % % 3. 快速模拟退火 % T = T0/(iter); % 在当前温度T下的迭代 % 当前温度下最优解的初始化 Fitness_temp = 0; X_temp = zeros(1,D); for i = 1:L % 随机生成新的解 N_temp = randn(1,D); P_temp = N_temp/sqrt(sum(N_temp.^2)); Current_X = Pre_X + T*P_temp; % 边界限制 防止解过大或过小 Current_X = BoundaryLimit(Current_X, X_Min, X_Max); Current_X_Fitness = Fitness(Current_X); % 更新当前温度下的最优解 if i == 1 Fitness_temp = Current_X_Fitness; X_temp = Current_X; else if Current_X_Fitness < Fitness_temp Fitness_temp = Current_X_Fitness; X_temp = Current_X; end end % 判断当前解与最优解以及上一解的大小关系 if Pre_X_Fitness <= Current_X_Fitness % 当前解不如上一次解 Metropolis准则,减小局部最优解的可能 P = exp(-1 * (Current_X_Fitness - Pre_X_Fitness) / K / T); if P > rand Pre_X = Current_X; Pre_X_Fitness = Current_X_Fitness; end % 当前解比上一次解好 else Pre_X = Current_X; Pre_X_Fitness = Current_X_Fitness; end end % 更新全局最优解 if MinFitness_List(iter-1) > Fitness_temp MinFitness_List(iter) = Fitness_temp; Best_X = X_temp; else MinFitness_List(iter) = MinFitness_List(iter-1); end % 将每个温度下的最优解都存储起来 Fitness_List(iter) = Fitness_temp; % 进度条 if mod(iter, waitbarinter) <1 waitbar(iter / iter_Max, h, ['已完成:' num2str(iter / iter_Max * 100) ... '% 运算中...用时:', num2str(toc),'/',num2str(toc/iter * iter_Max)]) end end close(h) % 结果文字展示 display(['The best solution obtained by SA is : ', num2str(Best_X)]); display(['The best optimal value of the objective funciton found by SA is : ', num2str(MinFitness_List(iter))]); % 结果图像展示 figure semilogy(MinFitness_List(1:iter),'linewidth',1.2) hold on semilogy(Fitness_List(1:iter),'linewidth',1.2) legend(['最小适应度变化'],['适应度变化']) title('Convergence Curve') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on % 目标函数 function result = Fitness(x) result = sum(x.^2); end % 边界限制函数 function result = BoundaryLimit(X, Min, Max) for i_temp = 1:length(X) if X(i_temp) > Max X(i_temp) = Max; end if X(i_temp) < Min X(i_temp) = Min; end end result = X; end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。