当前位置:   article > 正文

3D视觉——2.人体姿态估计(Pose Estimation)入门——OpenPose含安装、编译、使用(单帧、实时视频)_ose_deploy_linevec.prototxt

ose_deploy_linevec.prototxt

上一话

3D视觉——1.人体姿态估计(Pose Estimation)入门——使用MediaPipe含单帧(Signel Frame)与实时视频(Real-Time Video)https://blog.csdn.net/XiaoyYidiaodiao/article/details/125280207?spm=1001.2014.3001.5502


本章博客就是对OpenPose工具包进行开发;我呕心沥血(笑哭),经历重重困难,想放弃了很多次(因为openpose的编译实在是太麻烦了)但是后来还是成功了,各位点个赞吧!这个真的太麻烦了。

按照单帧图像和实时视频的顺序述写,其中单帧是使用的Pytorch编程只是调用OpenPose的模型;实时视频中使用Python调用OpenPose的包,所以必须得安装OpenPose,并对其进行编译,最后再使用。


首先从github上,下载CMU提供的源码下来:

https://github.com/CMU-Perceptual-Computing-Lab/openposehttps://github.com/CMU-Perceptual-Computing-Lab/openpose


项目结构

  1. OpenPose-Demo-Pytorch-master
  2. |
  3. |----images----|----pose.jpg
  4. |----bin(编译之后,从源码拷贝下来的,单帧不看这个)
  5. |----x64(编译之后,从源码拷贝下来的,单帧不看这个)
  6. |----Release(编译之后,从源码拷贝下来的,单帧不看这个)
  7. |----models----|----pose----|----body_25----|----pose_deploy.prototxt
  8. | | |----pose_iter_584000.caffemodel
  9. | |----coco----|----pose_deploy_linevec.prototxt
  10. | | |----pose_iter_440000.caffemodel
  11. |----video----|----1.mp4
  12. |----config.py
  13. |----predict.py(单帧)
  14. |----Demo.py(实时视频)

关键点详解

关键点25(model\pose\body_25\pose_iter_584000.caffemodel or pose_deploy.prototxt)如下图1. 所示,关键点18(model\pose\coco\pose_iter_440000.caffemodel or pose_deploy_linevec.prototxt)如下图2.所示。

下载模型,可在CMU的github上下载,上面提供了,就不再提供。

步骤:

  1. git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git
  2. or
  3. downloads .zip
  4. cd openpose-master/models
  5. bash getModels.sh (Linux)
  6. 双击 getModels.bat (Windows)
  7. 下载 pose_iter_584000.caffemodel
  8. pose_iter_440000.caffemodel
  9. ...(只用这两个,将其放置在我们项目的models\pose\下)

 图1.

  1. {0, “Nose”},
  2. {1, “Neck”},
  3. {2, “RShoulder”},
  4. {3, “RElbow”},
  5. {4, “RWrist”},
  6. {5, “LShoulder”},
  7. {6, “LElbow”},
  8. {7, “LWrist”},
  9. {8, “MidHip”},
  10. {9, “RHip”},
  11. {10, “RKnee”},
  12. {11, “RAnkle”},
  13. {12, “LHip”},
  14. {13, “LKnee”},
  15. {14, “LAnkle”},
  16. {15, “REye”},
  17. {16, “LEye”},
  18. {17, “REar”},
  19. {18, “LEar”},
  20. {19, “LBigToe”},
  21. {20, “LSmallToe”},
  22. {21, “LHeel”},
  23. {22, “RBigToe”},
  24. {23, “RSmallToe”},
  25. {24, “RHeel”}

 图2.

  1. {"Nose": 0,
  2. "Neck": 1,
  3. "RShoulder": 2,
  4. "RElbow": 3,
  5. "LShoulder": 5,
  6. "LElbow": 6,
  7. "LWrist": 7,
  8. "RHip": 8,
  9. "RKnee": 9,
  10. "RAnkle": 10,
  11. "LHip": 11,
  12. "LKnee": 12,
  13. "LAnkle": 13,
  14. "REye": 14,
  15. "LEye": 15,
  16. "REar": 16,
  17. "LEar": 17,
  18. "Background": 18}

1.单帧代码

对于单帧将之前的源码下载下来,并将模型权重拷贝(进入源码的models里面双击getModels.bat下载这些权重)到我们自己的项目,就是将models中.prototxt与.caffemodel拷走;之后我们对模型进行推理,其步骤主要为:

  • 首先,读取模型与推理所需要的图像,在进行推理获取结果
  • 其次,关键点检测,再利用PAFs,找到有些关键点对
  • 最后,将点对组合成正确的人体骨骼图

配置文件

config.py

  1. prototxt_25 = "models/pose/body_25/pose_deploy.prototxt"
  2. caffemodel_25 = "models/pose/body_25/pose_iter_584000.caffemodel"
  3. point_name_25 = ['None', 'Neck', 'RShoulder',
  4. 'RElbow', 'RWrist', 'LShoulder',
  5. 'LElbow', 'LWrist', 'MidHip',
  6. 'RHip', 'RKnee', 'RAnkle',
  7. 'LHip', 'LKnee', 'LAnkle',
  8. 'REye', 'LEye', 'REar',
  9. 'LEar', 'LBigToe', 'LSmallToe',
  10. 'LHeel', 'RBigToe', 'RSmallToe',
  11. 'RHeel']
  12. point_pairs_25 = [[1, 8], [1, 2], [1, 5], [2, 3], [3, 4], [5, 6],
  13. [6, 7], [8, 9], [9, 10], [10, 11], [8, 12], [12, 13],
  14. [13, 14], [1, 0], [0, 15], [15, 17], [0, 16], [16, 18],
  15. [2, 17], [5, 18], [14, 19], [19, 20], [14, 21], [11, 22],
  16. [22, 23], [11, 24]]
  17. map_idx_25 = [[26, 27], [40, 41], [48, 49], [42, 43], [44, 45], [50, 51],
  18. [52, 53], [32, 33], [28, 29], [30, 31], [34, 35], [36, 37],
  19. [38, 39], [56, 57], [58, 59], [62, 63], [60, 61], [64, 65],
  20. [46, 47], [54, 55], [66, 67], [68, 69], [70, 71], [72, 73],
  21. [74, 75], [76, 77]]
  22. colors_25 = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
  23. [255, 255, 0], [170, 255, 0], [85, 255, 0],
  24. [0, 255, 0], [0, 255, 85], [0, 255, 170],
  25. [0, 255, 255], [0, 170, 255], [0, 85, 255],
  26. [0, 0, 255], [85, 0, 255], [170, 0, 255],
  27. [255, 0, 255], [255, 0, 170], [255, 0, 85],
  28. [255, 170, 85], [255, 170, 170], [255, 170, 255],
  29. [255, 85, 85], [255, 85, 170], [255, 85, 255],
  30. [170, 170, 170]]
  31. prototxt_18 = "./models/coco/pose_deploy_linevec.prototxt"
  32. caffemodel_18 = "./models/coco/pose_iter_440000.caffemodel"
  33. point_names_18 = ['Nose', 'Neck',
  34. 'R-Sho', 'R-Elb', 'R-Wr',
  35. 'L-Sho', 'L-Elb', 'L-Wr',
  36. 'R-Hip', 'R-Knee', 'R-Ank',
  37. 'L-Hip', 'L-Knee', 'L-Ank',
  38. 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear']
  39. point_pairs_18 = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7],
  40. [1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13],
  41. [1, 0], [0, 14], [14, 16], [0, 15], [15, 17],
  42. [2, 17], [5, 16]]
  43. map_idx_18 = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44],
  44. [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30],
  45. [47, 48], [49, 50], [53, 54], [51, 52], [55, 56],
  46. [37, 38], [45, 46]]
  47. colors_18 = [[0, 100, 255], [0, 100, 255], [0, 255, 255],
  48. [0, 100, 255], [0, 255, 255], [0, 100, 255],
  49. [0, 255, 0], [255, 200, 100], [255, 0, 255],
  50. [0, 255, 0], [255, 200, 100], [255, 0, 255],
  51. [0, 0, 255], [255, 0, 0], [200, 200, 0],
  52. [255, 0, 0], [200, 200, 0], [0, 0, 0]]

OpenPose

predict.py(核心)

  1. import cv2
  2. import time
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. from config import *
  6. class general_mulitpose_model(object):
  7. # 初始化 Pose keypoint_num: 25 or 18
  8. def __init__(self, keypoint_num):
  9. # 加载openpose模型
  10. def get_model(self):
  11. # 获取关键点
  12. def getKeypoints(self, probMap, threshold=0.1):
  13. # 获取有效点对
  14. def getValidPairs(self, output, detected_keypoints, width, height):
  15. # 连接有效点对,获取完整的人体骨骼图
  16. def getPersonwiseKeypoints(self, valid_pairs, invalid_pairs, keypoints_list):
  17. # 关键点连接后的可视化
  18. def vis_pose(self, img_file, personwiseKeypoints, keypoints_list):
  19. # 预测(推理)关键点
  20. def predict(self, imgfile):

初始化

  1. def __init__(self, keypoint_num):
  2. self.point_names = point_name_25 if keypoint_num == 25 else point_names_18
  3. self.point_pairs = point_pairs_25 if keypoint_num == 25 else point_pairs_18
  4. self.map_idx = map_idx_25 if keypoint_num == 25 else map_idx_18
  5. self.colors = colors_25 if keypoint_num == 25 else colors_18
  6. self.num_points = 25 if keypoint_num == 25 else 18
  7. self.prototxt = prototxt_25 if keypoint_num == 25 else prototxt_18
  8. self.caffemodel = caffemodel_25 if keypoint_num == 25 else caffemodel_18
  9. self.pose_net = self.get_model()

获取关键点

  1. def getKeypoints(self, probMap, threshold=0.1):
  2. mapSmooth = cv2.GaussianBlur(probMap, (3, 3), 0, 0)
  3. mapMask = np.uint8(mapSmooth > threshold)
  4. keypoints = []
  5. # find the blobs
  6. contours, hierarchy = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  7. for cnt in contours:
  8. blobMask = np.zeros(mapMask.shape)
  9. blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
  10. maskedProbMap = mapSmooth * blobMask
  11. _, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
  12. keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
  13. return keypoints

获取有效点对

  1. def getValidPairs(self, output, detected_keypoints, width, height):
  2. valid_pairs = []
  3. invalid_pairs = []
  4. n_interp_samples = 15
  5. paf_score_th = 0.1
  6. conf_th = 0.7
  7. for k in range(len(self.map_idx)):
  8. # A -> B constitute a limb
  9. pafA = output[0, self.map_idx[k][0], :, :]
  10. pafB = output[0, self.map_idx[k][1], :, :]
  11. pafA = cv2.resize(pafA, (width, height))
  12. pafB = cv2.resize(pafB, (width, height))
  13. candA = detected_keypoints[self.point_pairs[k][0]]
  14. candB = detected_keypoints[self.point_pairs[k][1]]
  15. nA = len(candA)
  16. nB = len(candB)
  17. if (nA != 0 and nB != 0):
  18. valid_pair = np.zeros((0, 3))
  19. for i in range(nA):
  20. max_j = -1
  21. maxScore = -1
  22. found = 0
  23. for j in range(nB):
  24. # Find d_ij
  25. d_ij = np.subtract(candB[j][:2], candA[i][:2])
  26. norm = np.linalg.norm(d_ij)
  27. if norm:
  28. d_ij = d_ij / norm
  29. else:
  30. continue
  31. # Find p(u)
  32. interp_coord = list(
  33. zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples),
  34. np.linspace(candA[i][1], candB[j][1], num=n_interp_samples)))
  35. # Find L(p(u))
  36. paf_interp = []
  37. for k in range(len(interp_coord)):
  38. paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))],
  39. pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))]])
  40. # Find E
  41. paf_scores = np.dot(paf_interp, d_ij)
  42. avg_paf_score = sum(paf_scores) / len(paf_scores)
  43. # check if the connection is valid
  44. # If the fraction of interpolated vectors aligned with PAF is higher then threshold -> Valid Pair
  45. if (len(np.where(paf_scores > paf_score_th)[0]) / n_interp_samples) > conf_th:
  46. if avg_paf_score > maxScore:
  47. max_j = j
  48. maxScore = avg_paf_score
  49. found = 1
  50. # Append the connection to the list
  51. if found:
  52. valid_pair = np.append(valid_pair, [[candA[i][3], candB[max_j][3], maxScore]], axis=0)
  53. # Append the detected connections to the global list
  54. valid_pairs.append(valid_pair)
  55. else: # If no keypoints are detected
  56. print("No Connection : k = {}".format(k))
  57. invalid_pairs.append(k)
  58. valid_pairs.append([])
  59. return valid_pairs, invalid_pairs

连接有效点对,获取完整的人体骨骼图

  1. def getPersonwiseKeypoints(self, valid_pairs, invalid_pairs, keypoints_list):
  2. personwiseKeypoints = -1 * np.ones((0, self.num_points + 1))
  3. for k in range(len(self.map_idx)):
  4. if k not in invalid_pairs:
  5. partAs = valid_pairs[k][:, 0]
  6. partBs = valid_pairs[k][:, 1]
  7. indexA, indexB = np.array(self.point_pairs[k])
  8. for i in range(len(valid_pairs[k])):
  9. found = 0
  10. person_idx = -1
  11. for j in range(len(personwiseKeypoints)):
  12. if personwiseKeypoints[j][indexA] == partAs[i]:
  13. person_idx = j
  14. found = 1
  15. break
  16. if found:
  17. personwiseKeypoints[person_idx][indexB] = partBs[i]
  18. personwiseKeypoints[person_idx][-1] += keypoints_list[partBs[i].astype(int), 2] + \
  19. valid_pairs[k][i][2]
  20. elif not found and k < self.num_points - 1:
  21. row = -1 * np.ones(self.num_points + 1)
  22. row[indexA] = partAs[i]
  23. row[indexB] = partBs[i]
  24. row[-1] = sum(keypoints_list[valid_pairs[k][i, :2].astype(int), 2]) + \
  25. valid_pairs[k][i][2]
  26. personwiseKeypoints = np.vstack([personwiseKeypoints, row])
  27. return personwiseKeypoints

关键点连接后的可视化

import cv2 显示

因为原始图像尺寸太大了,所以我resize了一下。

  1. def vis_pose(self, img_file, personwiseKeypoints, keypoints_list):
  2. img = cv2.imread(img_file)
  3. for i in range(self.num_points - 1):
  4. for n in range(len(personwiseKeypoints)):
  5. index = personwiseKeypoints[n][np.array(self.point_pairs[i])]
  6. if -1 in index:
  7. continue
  8. B = np.int32(keypoints_list[index.astype(int), 0])
  9. A = np.int32(keypoints_list[index.astype(int), 1])
  10. cv2.line(img, (B[0], A[0]), (B[1], A[1]), self.colors[i], 3, cv2.LINE_AA)
  11. img = cv2.resize(img, (480, 640))
  12. cv2.imshow("Results", img)
  13. cv2.waitKey(0)
  14. cv2.destroyAllWindows()

import matplotlib.pyplot as plt 显示

  1. def vis_pose(self, img_file, personwiseKeypoints, keypoints_list):
  2. img = cv2.imread(img_file)
  3. for i in range(self.num_points - 1):
  4. for n in range(len(personwiseKeypoints)):
  5. index = personwiseKeypoints[n][np.array(self.point_pairs[i])]
  6. if -1 in index:
  7. continue
  8. B = np.int32(keypoints_list[index.astype(int), 0])
  9. A = np.int32(keypoints_list[index.astype(int), 1])
  10. cv2.line(img, (B[0], A[0]), (B[1], A[1]), self.colors[i], 3, cv2.LINE_AA)
  11. plt.figure()
  12. plt.imshow(img[:, :, ::-1])
  13. plt.title('Results')
  14. plt.axis("off")
  15. plt.show()

预测(推理)关键点

  1. def predict(self, imgfile):
  2. img = cv2.imread(imgfile)
  3. height, width, _ = img.shape
  4. net_height = 368
  5. net_width = int((net_height / height) * width)
  6. start = time.time()
  7. in_blob = cv2.dnn.blobFromImage(
  8. img, 1.0 / 255, (net_width, net_height), (0, 0, 0), swapRB=False, crop=False)
  9. self.pose_net.setInput(in_blob)
  10. output = self.pose_net.forward()
  11. print("[INFO]Time Taken in Forward pass: {} ".format(time.time() - start))
  12. detected_keypoints = []
  13. keypoints_list = np.zeros((0, 3))
  14. keypoint_id = 0
  15. threshold = 0.1
  16. for part in range(self.num_points):
  17. probMap = output[0, part, :, :]
  18. probMap = cv2.resize(probMap, (width, height))
  19. keypoints = self.getKeypoints(probMap, threshold)
  20. print("Keypoints - {} : {}".format(self.point_names[part], keypoints))
  21. keypoint_with_id = []
  22. for i in range(len(keypoints)):
  23. keypoint_with_id.append(keypoints[i] + (keypoint_id,))
  24. keypoints_list = np.vstack([keypoints_list, keypoints[i]])
  25. keypoint_id += 1
  26. detected_keypoints.append(keypoint_with_id)
  27. valid_paris, invalid_pairs = self.getValidPairs(output, detected_keypoints, width, height)
  28. personwiseKeypoints = self.getPersonwiseKeypoints(valid_paris, invalid_pairs, keypoints_list)
  29. self.vis_pose(imgfile, personwiseKeypoints, keypoints_list)

main.py

  1. if __name__ == '__main__':
  2. gmm = general_mulitpose_model(25)
  3. personwiseKeypoints, keypoints_list = gmm.predict("images/pose.jpg")

完整代码

  1. import cv2
  2. import time
  3. import math
  4. import numpy as np
  5. from config import *
  6. class general_mulitpose_model(object):
  7. def __init__(self, keypoint_num):
  8. self.point_names = point_name_25 if keypoint_num == 25 else point_names_18
  9. self.point_pairs = point_pairs_25 if keypoint_num == 25 else point_pairs_18
  10. self.map_idx = map_idx_25 if keypoint_num == 25 else map_idx_18
  11. self.colors = colors_25 if keypoint_num == 25 else colors_18
  12. self.num_points = 25 if keypoint_num == 25 else 18
  13. self.prototxt = prototxt_25 if keypoint_num == 25 else prototxt_18
  14. self.caffemodel = caffemodel_25 if keypoint_num == 25 else caffemodel_18
  15. self.pose_net = self.get_model()
  16. def get_model(self):
  17. coco_net = cv2.dnn.readNetFromCaffe(self.prototxt, self.caffemodel)
  18. return coco_net
  19. def predict(self, imgfile):
  20. start = time.time()
  21. img = cv2.imread(imgfile)
  22. height, width, _ = img.shape
  23. net_height = 368
  24. net_width = int((net_height / height) * width)
  25. start = time.time()
  26. in_blob = cv2.dnn.blobFromImage(
  27. img, 1.0 / 255, (net_width, net_height), (0, 0, 0), swapRB=False, crop=False)
  28. self.pose_net.setInput(in_blob)
  29. output = self.pose_net.forward()
  30. print("[INFO]Time Taken in Forward pass: {} ".format(time.time() - start))
  31. detected_keypoints = []
  32. keypoints_list = np.zeros((0, 3))
  33. keypoint_id = 0
  34. threshold = 0.1
  35. for part in range(self.num_points):
  36. probMap = output[0, part, :, :]
  37. probMap = cv2.resize(probMap, (width, height))
  38. keypoints = self.getKeypoints(probMap, threshold)
  39. print("Keypoints - {} : {}".format(self.point_names[part], keypoints))
  40. keypoint_with_id = []
  41. for i in range(len(keypoints)):
  42. keypoint_with_id.append(keypoints[i] + (keypoint_id,))
  43. keypoints_list = np.vstack([keypoints_list, keypoints[i]])
  44. keypoint_id += 1
  45. detected_keypoints.append(keypoint_with_id)
  46. valid_paris, invalid_pairs = self.getValidPairs(output, detected_keypoints, width, height)
  47. personwiseKeypoints = self.getPersonwiseKeypoints(valid_paris, invalid_pairs, keypoints_list)
  48. img = self.vis_pose(imgfile, personwiseKeypoints, keypoints_list)
  49. FPS = math.ceil(1 / (time.time() - start))
  50. img = cv2.putText(img, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
  51. return img
  52. def getKeypoints(self, probMap, threshold=0.1):
  53. mapSmooth = cv2.GaussianBlur(probMap, (3, 3), 0, 0)
  54. mapMask = np.uint8(mapSmooth > threshold)
  55. keypoints = []
  56. # find the blobs
  57. _, contours, hierarchy = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  58. for cnt in contours:
  59. blobMask = np.zeros(mapMask.shape)
  60. blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
  61. maskedProbMap = mapSmooth * blobMask
  62. _, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
  63. keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
  64. return keypoints
  65. def getValidPairs(self, output, detected_keypoints, width, height):
  66. valid_pairs = []
  67. invalid_pairs = []
  68. n_interp_samples = 15
  69. paf_score_th = 0.1
  70. conf_th = 0.7
  71. for k in range(len(self.map_idx)):
  72. # A -> B constitute a limb
  73. pafA = output[0, self.map_idx[k][0], :, :]
  74. pafB = output[0, self.map_idx[k][1], :, :]
  75. pafA = cv2.resize(pafA, (width, height))
  76. pafB = cv2.resize(pafB, (width, height))
  77. candA = detected_keypoints[self.point_pairs[k][0]]
  78. candB = detected_keypoints[self.point_pairs[k][1]]
  79. nA = len(candA)
  80. nB = len(candB)
  81. if (nA != 0 and nB != 0):
  82. valid_pair = np.zeros((0, 3))
  83. for i in range(nA):
  84. max_j = -1
  85. maxScore = -1
  86. found = 0
  87. for j in range(nB):
  88. # Find d_ij
  89. d_ij = np.subtract(candB[j][:2], candA[i][:2])
  90. norm = np.linalg.norm(d_ij)
  91. if norm:
  92. d_ij = d_ij / norm
  93. else:
  94. continue
  95. # Find p(u)
  96. interp_coord = list(
  97. zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples),
  98. np.linspace(candA[i][1], candB[j][1], num=n_interp_samples)))
  99. # Find L(p(u))
  100. paf_interp = []
  101. for k in range(len(interp_coord)):
  102. paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))],
  103. pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))]])
  104. # Find E
  105. paf_scores = np.dot(paf_interp, d_ij)
  106. avg_paf_score = sum(paf_scores) / len(paf_scores)
  107. # check if the connection is valid
  108. # If the fraction of interpolated vectors aligned with PAF is higher then threshold -> Valid Pair
  109. if (len(np.where(paf_scores > paf_score_th)[0]) / n_interp_samples) > conf_th:
  110. if avg_paf_score > maxScore:
  111. max_j = j
  112. maxScore = avg_paf_score
  113. found = 1
  114. # Append the connection to the list
  115. if found:
  116. valid_pair = np.append(valid_pair, [[candA[i][3], candB[max_j][3], maxScore]], axis=0)
  117. # Append the detected connections to the global list
  118. valid_pairs.append(valid_pair)
  119. else: # If no keypoints are detected
  120. print("No Connection : k = {}".format(k))
  121. invalid_pairs.append(k)
  122. valid_pairs.append([])
  123. return valid_pairs, invalid_pairs
  124. def getPersonwiseKeypoints(self, valid_pairs, invalid_pairs, keypoints_list):
  125. personwiseKeypoints = -1 * np.ones((0, self.num_points + 1))
  126. for k in range(len(self.map_idx)):
  127. if k not in invalid_pairs:
  128. partAs = valid_pairs[k][:, 0]
  129. partBs = valid_pairs[k][:, 1]
  130. indexA, indexB = np.array(self.point_pairs[k])
  131. for i in range(len(valid_pairs[k])):
  132. found = 0
  133. person_idx = -1
  134. for j in range(len(personwiseKeypoints)):
  135. if personwiseKeypoints[j][indexA] == partAs[i]:
  136. person_idx = j
  137. found = 1
  138. break
  139. if found:
  140. personwiseKeypoints[person_idx][indexB] = partBs[i]
  141. personwiseKeypoints[person_idx][-1] += keypoints_list[partBs[i].astype(int), 2] + \
  142. valid_pairs[k][i][2]
  143. elif not found and k < self.num_points - 1:
  144. row = -1 * np.ones(self.num_points + 1)
  145. row[indexA] = partAs[i]
  146. row[indexB] = partBs[i]
  147. row[-1] = sum(keypoints_list[valid_pairs[k][i, :2].astype(int), 2]) + \
  148. valid_pairs[k][i][2]
  149. personwiseKeypoints = np.vstack([personwiseKeypoints, row])
  150. return personwiseKeypoints
  151. def vis_pose(self, img_file, personwiseKeypoints, keypoints_list):
  152. img = cv2.imread(img_file)
  153. for i in range(self.num_points - 1):
  154. for n in range(len(personwiseKeypoints)):
  155. index = personwiseKeypoints[n][np.array(self.point_pairs[i])]
  156. if -1 in index:
  157. continue
  158. B = np.int32(keypoints_list[index.astype(int), 0])
  159. A = np.int32(keypoints_list[index.astype(int), 1])
  160. cv2.line(img, (B[0], A[0]), (B[1], A[1]), self.colors[i], 3, cv2.LINE_AA)
  161. img = cv2.resize(img, (480, 640))
  162. return img
  163. if __name__ == '__main__':
  164. gmm = general_mulitpose_model(25)
  165. img = gmm.predict("images/pose.jpg")
  166. cv2.imshow("frame", img)
  167. cv2.waitKey(0)
  168. cv2.destroyAllWindows()

运行结果

cv2显示

plt 显示


2.实时视频

因为之前都只是调用了openpose的模型并没有真正使用源码,所以现在真正使用,并且编译一下,其步骤为:

1)配置文件3rdparty\windows

将之前github上下载好的项目,找到位置打开,如我的位置:

D:\PycharmProject\openpose-master

进入"3rdparty",找到windows,双击四个.bat文件

  1. D:\PycharmProject\openpose-master\3rdparty\windows
  2. getCaffe.bat
  3. getCaffe3rdparty.bat
  4. getFreeglut.bat
  5. getOpenCV.bat

 

 2)配置文件3rdparty\caffe or pybind11

进入官网的"3rdparty",找到caffe or pybind11

 将其git clone https://github.com/CMU-Perceptual-Computing-Lab/caffe.git 或者 下载.zip文件, 放到你文件所在的位置如:

'D:\PycharmProject\openpose-master\3rdparty\caffe'

将其git clone https://github.com/pybind/pybind11.git 或者 下载.zip文件,放到你文件所在的位置如:'D:\PycharmProject\openpose-master\3rdparty\pybind11'

如图

3)模型下载(之前已经介绍过了)

  1. cd openpose-master/models
  2. bash getModels.sh (Linux)
  3. 双击 getModels.bat (Windows)
  4. 下载 pose_iter_584000.caffemodel
  5. pose_iter_440000.caffemodel
  6. ...(还有hand,face的模型)

4)Cmake编译

首先下载cmake-gui:

https://cmake.org/download/https://cmake.org/download/windows就下载.msi版本的

之后就是将openpose-master编译

第三行的build是自己取的名字,可以直接build或者其他build_CPU

 点击Add Entry,输入自己的Python路径,再点击OK!

 之后,点击“Configure“

配置vs,你的vs要和你电脑的版本一样,可在 控制面板-> 程序 中查看

 完成之后,再点BUILD_PYTHON,DOWNLOAD_BODY_25_MODEL,DOWNLOAD_BODY_COCO_MODEL,DOWNLOAD_BODY_MPI_MODEL(hand,face也如果有用也选吧!)

 

“GPU_MODE”选中“CPU_ONLY”,不选"USE_CUDNN";你也可以选择"CUDA",那之后必须选择“USE_CUDNN”

 点击“Configure”,等全部完成之后,点击“Generate”

5)编译工程

找到openpose-master/build/OpenPose.sln使用vs 2017打开,输入(release x64版本)点击绿色倒三角符号,等待结果

 如果成功这是下面这种状态,并且视频摄像头打开,openpose开始识别人体姿态与人!

 之后右键点击pyopenpose,设为启动项目

 之后结合,官网给的代码,仿照"openpose-master\build\examples\tutorial_api_python\01_body_from_image.py"来导入pyopenpose

把官网给的openpose-master\build\bin 与 openpose-master\x64拷贝到自己的项目里面去

把openpose-master\build\python\openpose\Release 导入自己的项目

再把openpose-master\models中的 hand 和 face 还有 pose 导入自己的项目中去 


代码

尝试导入openpose,查看是否成功

  1. import os
  2. import sys
  3. from sys import platform
  4. BASE_DIR = os.path.dirname(os.path.realpath(__file__))
  5. if platform == 'win32':
  6. lib_dir = 'Release'
  7. bin_dir = 'bin'
  8. x64_dir = 'x64'
  9. lib_path = os.path.join(BASE_DIR, lib_dir)
  10. bin_path = os.path.join(BASE_DIR, bin_dir)
  11. x64_path = os.path.join(BASE_DIR, x64_dir)
  12. sys.path.append(lib_path)
  13. os.environ['PATH'] += ';' + bin_path + ';' + x64_path + '\Release;'
  14. try:
  15. import pyopenpose as op
  16. print("successful, import pyopenpose!")
  17. except ImportError as e:
  18. print("fail to import pyopenpose!")
  19. raise e
  20. else:
  21. print(f"当前电脑环境:\n{platform}\n")
  22. sys.exit(-1)

 查看结果


实时视频核心代码

  1. # 处理数据
  2. datum = op.Datum()
  3. # 开始openpose
  4. opWrapper = op.WrapperPython()
  5. # 配置参数
  6. params = dict()
  7. params["model_folder"] = BASE_DIR + "\models"
  8. params["model_pose"] = "BODY_25"
  9. params["number_people_max"] = 3
  10. params["disable_blending"] = False
  11. # 导入参数
  12. opWrapper.configure(params)
  13. opWrapper.start()
  14. ...

  1. ...
  2. # 处理图像
  3. # 输入图像frame打入datum.cvInputData
  4. datum.cvInputData = frame
  5. # 处理输入图像
  6. opWrapper.emplaceAndPop(op.VectorDatum([datum]))
  7. # 输出图像为opframe
  8. opframe = datum.cvOutputData
  9. ....

 完整代码

  1. import os
  2. import time
  3. import cv2
  4. import sys
  5. from tqdm import tqdm
  6. from sys import platform
  7. BASE_DIR = os.path.dirname(os.path.realpath(__file__))
  8. if platform == 'win32':
  9. lib_dir = 'Release'
  10. bin_dir = 'bin'
  11. x64_dir = 'x64'
  12. lib_path = os.path.join(BASE_DIR, lib_dir)
  13. bin_path = os.path.join(BASE_DIR, bin_dir)
  14. x64_path = os.path.join(BASE_DIR, x64_dir)
  15. sys.path.append(lib_path)
  16. os.environ['PATH'] += ';' + bin_path + ';' + x64_path + '\Release;'
  17. try:
  18. import pyopenpose as op
  19. print("successful, import pyopenpose!")
  20. except ImportError as e:
  21. print("fail to import pyopenpose!")
  22. raise e
  23. else:
  24. print(f"当前电脑环境:\n{platform}\n")
  25. sys.exit(-1)
  26. def out_video(input):
  27. datum = op.Datum()
  28. opWrapper = op.WrapperPython()
  29. params = dict()
  30. params["model_folder"] = BASE_DIR + "\models"
  31. params["model_pose"] = "BODY_25"
  32. params["number_people_max"] = 3
  33. params["disable_blending"] = False
  34. opWrapper.configure(params)
  35. opWrapper.start()
  36. file = input.split("/")[-1]
  37. output = "video/out-optim-" + file
  38. print("It will start processing video: {}".format(input))
  39. cap = cv2.VideoCapture(input)
  40. frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
  41. frame_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
  42. # create VideoWriter,VideoWriter_fourcc is video decode
  43. fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
  44. fps = cap.get(cv2.CAP_PROP_FPS)
  45. out = cv2.VideoWriter(output, fourcc, fps, frame_size)
  46. # the progress bar
  47. with tqdm(range(frame_count)) as pbar:
  48. while cap.isOpened():
  49. start = time.time()
  50. success, frame = cap.read()
  51. if success:
  52. datum.cvInputData = frame
  53. opWrapper.emplaceAndPop(op.VectorDatum([datum]))
  54. opframe = datum.cvOutputData
  55. FPS = 1 / (time.time() - start)
  56. opframe = cv2.putText(opframe, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
  57. (0, 255, 0), 3)
  58. out.write(opframe)
  59. pbar.update(1)
  60. else:
  61. break
  62. pbar.close()
  63. cv2.destroyAllWindows()
  64. out.release()
  65. cap.release()
  66. print("{} finished!".format(output))
  67. if __name__ == "__main__":
  68. video_dir = "video/2.avi"
  69. out_video(video_dir)

运行结果

OpenPose运行结果

效果比之前的MediaPipe好很多


参考:

工程实现 || 基于opencv使用openpose完成人体姿态估计https://blog.csdn.net/magic_ll/article/details/108451560?spm=1001.2014.3001.5506openpose从安装到实战全攻略!(win10)https://zhuanlan.zhihu.com/p/500651669


下一话

3D视觉——3.人体姿态估计(Pose Estimation) 算法对比 即 效果展示——MediaPipe与OpenPosehttps://blog.csdn.net/XiaoyYidiaodiao/article/details/125571632

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
  

闽ICP备14008679号